
Reading and Writing Files
1.

filename = input('Which file would you like to back-up? ')
new_filename = filename + '.bak'
backup = open(new_filename, 'w')

for line in open(filename):
 backup.write(line)

backup.close()

2.

alkaline_metals = []
for line in open('alkaline_metals.txt'):
 alkaline_metals.append(line.strip().split(' '))

3.

We could read the file contents into a data structure, such as a list, and then iterate
over the list from end (last line) to beginning (first line).

4.

def process_file(reader):
 """ (file open for reading) -> NoneType

 Read and print the data from reader, which must start with a single
 description line, then a sequence of lines beginning with '#', then a
 sequence of data.
 """

 # Find and print the first piece of data.
 line = skip_header(reader).strip()
 print(line)

 # Read the rest of the data.
 print(reader.read())

5.

import time_series

def smallest_value_skip(reader):
 """ (file open for reading) -> number or NoneType

 Read and process reader, which must start with a time_series header.
 Return the smallest value after the header. Skip missing values, which
 are indicated with a hyphen.

 """

 line = time_series.skip_header(reader).strip()

 # Only execute this code, if there is data following the header.
 if line != '':
 smallest = int(line)

 for line in reader:
 line = line.strip()
 if line != '-':
 value = int(line)
 smallest = min(smallest, value)

 return smallest

if __name__ == '__main__':
 with open('hebron.txt', 'r') as input_file:
 print(smallest_value_skip(input_file))

6.

import time_series

def smallest_value_skip(reader):
 """ (file open for reading) -> NoneType

 Read and process reader, which must start with a time_series header.
 Return the smallest value after the header. Skip missing values, which
 are indicated with a hyphen.
 """

 line = time_series.skip_header(reader).strip()

 # Now line contains the first data value; this is also the smallest value
 # found so far, because it is the only one we have seen.
 smallest = int(line)

 for line in reader:
 line = line.strip()
 if line == '-':
 continue

 value = int(line)
 smallest = min(smallest, value)

 return smallest

if __name__ == '__main__':
 with open('hebron.txt', 'r') as input_file:
 print(smallest_value_skip(input_file))

7.

def read_molecule(reader):

 """ (file open for reading) -> list or NoneType
 Read a single molecule from reader and return it, or return None to
signal
 end of file. The first item in the result is the name of the compound;
 each list contains an atom type and the X, Y, and Z coordinates of that
 atom.
 """

 # If there isn't another line, we're at the end of the file.
 line = reader.readline()
 if not line:
 return None

 if not (line.startswith('CMNT') or line.isspace()):
 # Name of the molecule: "COMPND name"
 key, name = line.split()

 # Other lines are either "END" or "ATOM num atom_type x y z"
 molecule = [name]
 else:
 molecule = None

 reading = True
 while reading:
 line = reader.readline()
 if line.startswith('END'):
 reading = False
 elif not (line.startswith('CMNT') or line.isspace()):
 key, num, atom_type, x, y, z = line.split()
 if molecule == None:
 molecule = []
 molecule.append([atom_type, x, y, z])

 return molecule

8.

def read_molecule(reader):
 """ (file open for reading) -> list or NoneType

 Read a single molecule from reader and return it, or return None to
signal
 end of file. The first item in the result is the name of the compound;
 each list contains an atom type and the X, Y, and Z coordinates of that
 atom.
 """

 # If there isn't another line, we're at the end of the file.
 line = reader.readline()
 if not line:
 return None

 # Name of the molecule: "COMPND name"
 key, name = line.split()

 # Other lines are either "END" or "ATOM num atom_type x y z"

 molecule = [name]
 reading = True

 serial_number = 1
 while reading:
 line = reader.readline()
 if line.startswith('END'):
 reading = False
 else:
 key, num, atom_type, x, y, z = line.split()
 if int(num) != serial_number:
 print('Expected serial number {0}, but got {1}'.format(
 serial_number, num))
 molecule.append([atom_type, x, y, z])
 serial_number += 1

 return molecule

	

