
Designing and Using Functions
1.

 a. 2
 a. 7
 a. 4

2. a. max(3, 4), then abs(-‐5), then min(4, 5).
b. max(2, 8), then min(4, 6, 8), then abs(4).
c. max(5.572, 3.258), then abs(-‐2), then round(5.572, 2).

3.

def triple(num):
 """ (number) -> number

 Return num tripled.

 >>> triple(3)
 9
 """

 return num * 3

4.

def absolute_difference(number1, number2):
 """ (number, number) -> number

 Return the absolute value of the difference between number1
 and number2.

 >>> absolute_difference(3, 7)
 4
 """
 return abs(number1 - number2)

5.
def km_to_miles(km):
 """ (number) -> float

 Return the distance km in miles.

 >>> km_to_miles(5)
 3.125
 """

 return km / 1.6

6.

def average_grade(grade1, grade2, grade3):
 """ (number, number, number) -> number

 Return the average of the grade1, grade2, and grade3, where
 each grade ranges from 0 to 100, inclusive.

 >>> average_grade(80, 95, 90)
 88.33333333333333
 """
 return (grade1 + grade2 + grade3) / 3

7.

def top_three_avg(grade1, grade2, grade3, grade4):
 """ (number, number, number, number) -> number

 Return the average of the top three of grades grade1, grade2,
 grade3, and grade4.

 >>> top_three_avg(50, 60, 70, 80)
 70
 """

 # Here is one solution that does not use average_grade from Q6.
 total = grade1 + grade2 + grade3 + grade4
 top_three = total - min(grade1, grade2, grade3, grade4)
 return top_three / 3

 # Here is a different solution that does use the function from Q6.
 return max(average_grade(grade1, grade2, grade3),
 average_grade(grade1, grade2, grade4),
 average_grade(grade1, grade3, grade4),
 average_grade(grade2, grade3, grade4))

8.

def weeks_elapsed(day1, day2):
 """ (int, int) -> int
 day1 and day2 are days in the same year. Return the number of full weeks
 that have elapsed between the two days.

 >>> weeks_elapsed(3, 20)
 2
 >>> weeks_elapsed(20, 3)
 2
 >>> weeks_elapsed(8, 5)
 0
 >>> weeks_elapsed(40, 61)
 3
 """
 return int(abs(day1 - day2) / 7)

9.

Description Example
Parameter num
Argument 3
Function name square
Function call square(3)

10.

def square(num):
 """ (number) -> number

 Return the square of num.

 >>> square(3)
 9
 """
 return num ** 2

...or:

def square(num):
 """ (number) -> number

 Return the square of num.

 >>> square(3)
 9
 """
 return num * num

	

