
Extracted from:

Lean from the Trenches
Managing Large-Scale Projects with Kanban

This PDF file contains pages extracted from Lean from the Trenches, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Kay Keppler (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2011 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-85-2
Printed on acid-free paper.
Book version: P1.0—December, 2011

http://pragprog.com

CHAPTER 7

Defining Ready and Done
It’s important to be very clear about what the columns on the board mean.
Especially in big projects, the more people involved, the greater the risk of
confusion, and the greater the cost of confusion.

The blue text at the top of most columns on our project board is the definition
of done for that column (which also means definition of ready for the subse-
quent column). The two most important definitions for us are definition of
ready for development and definition of ready for system test, since that’s
where we used to have the most problems.

Definition of
”Ready for

Development”

Definition of
”Ready for

System Test”

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hklean
http://forums.pragprog.com/forums/hklean

7.1 Ready for Development

The “Ready for Development” column essentially means “Here’s a bunch of
features that we’ve broken down and estimated and clarified, but we haven’t
yet decided which of these we are going to develop and in which order.” So,
this corresponds roughly to a Scrum product backlog. For a feature to be
ready for development, it must have the following characteristics:

• It must have an ID. The ID is used as a key when you’re looking up more
information about this feature, in case there are any associated use case
specifications or other documents. These documents are accessible on
the project wiki by clicking the corresponding ID.

• It must have a contact person. The contact person is typically the require-
ments analyst who has the most domain knowledge about this feature.

• It must be valuable to customers. When breaking down epics into deliver-
able stories, we want to make sure we haven’t lost the customer value
along the way. The requirements analysts have the final say on this matter.

• It must be estimated by the team. The estimates are normally done by a
small group consisting of a tester, a developer, and a requirements analyst
playing Planning Poker (see Chapter 19, Sizing the Backlog with Planning
Poker, on page ?). We use T-shirt sizes (small, medium, large). These are
size estimates, not time estimates. But to make the estimation process
easier, we use this as a rough guideline:

• Small means “Under perfect conditions this will take less than one
week of elapsed time to get to ‘Ready For Acceptance Test.’” Perfect
conditions means that we have exactly the right people working only
on this feature with no disruptions.

• Medium means one to two weeks (again, under perfect conditions).

• Large means more than two weeks. Large features have to be broken
down further before they are allowed into development.

• It must have an acceptance test scenario written on the backside of the
card. This is a concrete set of steps describing the most typical test
scenario. Here’s an example:

“Joe Cop logs in, looks up case #235, and closes it. He then looks up case
#235 again and sees that it’s closed.”

6 • Chapter 7. Defining Ready and Done

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hklean
http://forums.pragprog.com/forums/hklean

7.2 Ready for System Test

“Ready for System Test” means that the feature team has done everything
they can think of to ensure that this feature works and doesn’t have any
important defects. They have, however, focused on testing the feature itself,
not the whole release that it would be part of.

For a long time system test was a bottleneck, and one of the major reasons
for that was the high number of unnecessary defects passing into system
test. By “unnecessary defects,” I mean feature-level defects that could have
been found way before putting it all together into a system test. So, our defi-
nition of ready for system test is there to keep the quality bar high and catch
those pesky bugs early. It’s also there to give the feature team a sense of
responsibility for quality and to give them permission to spend the necessary
time to ensure that a feature really works, before delivering it to system test
and moving on to the next feature.

So, here is our definition of ready for system test:

• Acceptance test automated: This means that some kind of end-to-end
feature-level acceptance test or integration test has been automated. We
used to use Selenium for that (which runs tests directly against the web
interface), but we eventually moved to Concordion. The Selenium tests
were just too brittle for our Ajax-riddled web interface, and Concordion
fit better with our move toward Specification By Example.1

• Regression tests pass: All automated tests for previously existing features
pass. Sometimes a new feature breaks an old feature, so we have to make
sure that all old tests are run on a regular basis.

• Demonstrated: The team has demonstrated this feature to the rest of the
team, the on-site user, the requirements analyst, the system tester, and
the usability expert. This helps us catch usability issues early so they
don’t show up in system test or (even worse) user acceptance test.

• Clear check-in comments: When checking in code related to this feature,
the check-in comment should be tagged with the ID of this feature, plus
an easily understandable comment about what was done. This provides
a minimum level of traceability (big projects always seem to fuss about
traceability...).

1. www.specificationbyexample.com

• Click HERE to purchase this book now. discuss

Ready for System Test • 7

http://www.specificationbyexample.com
http://pragprog.com/titles/hklean
http://forums.pragprog.com/forums/hklean

• Tested in the development environment: Each team has a dedicated test
environment, and this feature should be tested there (to avoid the “Hey,
it works on my machine” syndrome).

• Merged to trunk: Code for this feature should be on the trunk, and any
merge conflicts should be resolved. This is the basis of the stable trunk
model we use (see Chapter 14, How We Do Version Control, on page ?).

7.3 How This Improved Collaboration

These two policy statements—definition of ready for development and definition
of ready for system test—have significantly improved collaboration between
the teams. This improvement stood out clearly when I did a short survey to
check what people thought about all the process changes so far.

In the past, when we just started doing Kanban, each specialty team focused
mostly on “their” part of the project board. The requirements analysts looked
only at the left part of the project board and considered themselves “done”
with a feature when a requirements document had been written. The develop-
ers looked only at the middle of the board, and the testers looked only at the
right. The testers weren’t involved in writing the requirements, so once a
feature reached test, there was often confusion about how it was supposed
to work. People spent a lot of effort arguing about the level of detail needed
in the requirements documents.

These were just old habits. But the project board helped everyone see the
problem, which is the first and most critical step toward solving it!

The collaboration problems gradually disappeared (well, significantly declined
at least) within a few weeks after everyone had agreed on the definitions. The
definition of ready for development can be achieved only if all specialties work
together to estimate features, to break them into small enough deliverables
without losing too much customer value, and to agree on acceptance tests.

Similarly, the definition of ready for system test can be achieved only if all
specialties work together to run feature-level tests (both automated tests and
manual exploratory tests) to determine whether this feature is good enough
to release.

This clear need for continuous collaboration is what made the test team and
requirements team agree to “lend” specialists to each feature team, thus
making each feature team truly cross-functional (and much more effective)!

In general, writing a definition of ready at the top of each key column is one
of those simple techniques that is useful in any kind of Kanban system.

8 • Chapter 7. Defining Ready and Done

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hklean
http://forums.pragprog.com/forums/hklean

