
Extracted from:

The Cucumber Book
Behaviour-Driven Development

for Testers and Developers

This PDF file contains pages extracted from The Cucumber Book, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-80-7
Printed on acid-free paper.
Book version: P2.0—August 2012

http://pragprog.com

It’s time to pull together everything that you’ve learned in the first part of the
book and use it in practice. There are a few advanced concepts left about
Cucumber that we want to explain to you, and they’ll be much easier to
demonstrate with an example. A lot of what we’ll do in this part of the book
will blur the line between testing and development. If you’re more of a tester
than a developer, don’t let that worry you: the Ruby code we’ll build is just
about as simple as it gets. By following along, you’ll get a good sense of how
we like to work, as well as pick up some new knowledge about working with
Cucumber.

At the end of Section 4.5, Returning Results, on page ?, we’d just started
work on a greenfield project to build the software for an ATM. We had a single
scenario for the most important behavior of the system: letting someone walk
up to the machine and withdraw cash.

Download step_definitions_inside/01/features/cash_withdrawal.feature
Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20
Then $20 should be dispensed

Now we’re going to pick up this scenario and work outside-in, designing the
system as we go, just as we would on a real project. In this chapter, we’ll get
the scenario to pass by driving out a simple domain model for our ATM. Then,
in the next chapter, we’ll get a nasty surprise when we discover that there’s
a missing step in our scenario. Finally, we’ll demonstrate the benefits of well-
engineered test code by introducing a user interface around the domain
model.

By the end of this chapter, you’ll have learned about Cucumber’s World and
how you can use it to contain state that’s shared between step definitions.
We’ll write some custom helper methods that will introduce a layer of decou-
pling between our step definitions and the application we’re building. We’ll
show you how to use transforms to reduce duplication in your step definitions
and make their regular expressions more readable. Finally, we’ll show you
how we like to organize the files in our projects so that they’re easy to work
with and maintain.

7.1 Sketching Out the Domain Model

The heart of any object-oriented program is the domain model. When we start
to build a new system, we like to work directly with the domain model. This
allows us to iterate and learn quickly about the problem we’re working on
without getting distracted by user interface gizmos. Once we have a domain

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/01/features/cash_withdrawal.feature
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

model that really reflects our understanding of the system, it’s easy to wrap
it in a pretty skin.

We’re going to let Cucumber drive our work, building the domain model
classes directly in the step definitions. As usual, we start by running cucumber
on our scenario to remind us what to do next:

Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account

uninitialized constant Account (NameError)
./features/step_definitions/steps.rb:2
features/cash_withdrawal.feature:3

When I request $20
Then $20 should be dispensed

Failing Scenarios:
cucumber features/cash_withdrawal.feature:2

1 scenario (1 failed)
3 steps (1 failed, 2 skipped)
0m0.005s

When we last worked on this scenario, we’d just reached the point where we
had written the regular expressions for each of our step definitions and
started to implement the first one. Here’s how our steps file looks:

Download step_definitions_inside/01/features/step_definitions/steps.rb
Given /^I have deposited \$(\d+) in my account$/ do |amount|
Account.new(amount.to_i)

end

When /^I request \$(\d+)$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

Then /^\$(\d+) should be dispensed$/ do |arg1|
pending # express the regexp above with the code you wish you had

end

In that first step definition, we’ve sketched out a call to an imaginary class
called Account. Ruby has given us an error that tells us that the next thing we
need to do is define the Account class. Let’s go ahead and do that:

Download step_definitions_inside/02/features/step_definitions/steps.rb
class Account
def initialize(amount)
end

end

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/01/features/step_definitions/steps.rb
http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/02/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

Given /^I have deposited \$(\d+) in my account$/ do |amount|
Account.new(amount.to_i)

end

Notice that we’re defining the class right here in our steps file. Don’t worry—
it’s not going to stay here forever, but it’s most convenient for us to create it
right here where we’re working. Once we have a clear idea of how we’re going
to work with the class, then we can refactor and move it to a more permanent
home. We’re also converting the amount captured from the Gherkin step as
a string into a number before we pass it into the domain model.

Let’s run cucumber again and see what it thinks of that:

Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account
When I request $20

TODO (Cucumber::Pending)
./features/step_definitions/steps.rb:13
features/cash_withdrawal.feature:4

Then $20 should be dispensed

1 scenario (1 pending)
3 steps (1 skipped, 1 pending, 1 passed)
0m0.002s

Well, that was easy! Perhaps...too easy? Let’s review the code in our step
definition and see what we think. There are a couple of things we’re not
happy about:

• There’s some inconsistent language creeping in; the step talks about
depositing funds into the account, but the code passes the funds to the
Account class’s constructor.

• The step is lying to us! It says Given I have deposited $100 in my account, and it’s
passed. Yet we know from our implementation that nothing has been
deposited anywhere.

• Having to convert the amount to an integer is messy. If we have a variable
called amount, we should expect it to already be a number of some kind,
not the string captured by the regular expression.

We’ll work through each of these points before we move onto the next step in
the scenario.

• Click HERE to purchase this book now. discuss

Sketching Out the Domain Model • 7

http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

Getting the Words Right

We want to clarify the wording before we do anything else, so let’s think about
how we could make the code in the step definition read more like the text in
the step. We could go back and reword the step to say something like Given an
Account with a balance of $100. In reality, though, the only way that an account
would have a balance is if someone deposited funds into it. So, let’s change
the way we talk to the domain model inside our step definition to reflect that:

Download step_definitions_inside/03/features/step_definitions/steps.rb
class Account
def deposit(amount)
end

end

Given /^I have deposited \$(\d+) in my account$/ do |amount|
my_account = Account.new
my_account.deposit(amount.to_i)

end

That seems better.

There’s something else in the wording that bothers us. In the step, we talk
about my account, which implies the existence of a protagonist in the scenario
who has a relationship to the account, perhaps a Customer. This is a sign that
we’re probably missing a domain concept. However, until we get to a scenario
where we have to deal with more than one customer, we’d prefer to keep
things simple and focus on designing the fewest classes we need to get this
scenario running. So, we’ll park this concern for now.

Telling the Truth

Now that we’re happier with the interface to our Account class, we can resolve
the next issue from our code review. After we’ve deposited the funds in the
account, we can check its balance with an assertion:

Download step_definitions_inside/04/features/step_definitions/steps.rb
Given /^I have deposited \$(\d+) in my account$/ do |amount|
my_account = Account.new
my_account.deposit(amount.to_i)
my_account.balance.should eq(amount.to_i),

"Expected the balance to be #{amount} but it was #{my_account.balance}"
end

We’ve used an RSpec assertion here, but if you prefer another assertion library,
feel free to use that. It might seem odd to put an assertion in a Given step, but
it communicates to future readers of this code what state we expect the system

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/03/features/step_definitions/steps.rb
http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/04/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

to be in once the step has run. We’ll need to add a balance method to the Account
so that we can run this code:

Download step_definitions_inside/04/features/step_definitions/steps.rb
class Account

def deposit(amount)
end

def balance
end

end

Notice that we’re just sketching out the interface to the class, rather than
adding any implementation to it. This way of working is fundamental to out-
side-in development. We try not to think about how the Account is going to
work yet but concentrate on what it should be able to do.

Now when we run the test, we get a nice helpful failure message:

Feature: Cash Withdrawal

Scenario: Successful withdrawal from an account in credit
Given I have deposited $100 in my account

Expected the balance to be 100 but it was
(RSpec::Expectations::ExpectationNotMetError)
./features/step_definitions/steps.rb:15
features/cash_withdrawal.feature:3

When I request $20
Then $20 should be dispensed

Failing Scenarios:
cucumber features/cash_withdrawal.feature:2

1 scenario (1 failed)
3 steps (1 failed, 2 skipped)
0m0.003s

Now our step definition is much more robust, because we know it will sound
an alarm bell if it isn’t able to deposit the funds into the account as we’ve
asked it to do. Adding assertions to Given and When steps like this means that
if there’s ever a regression later in the project, it’s much easier to diagnose
because the scenario will fail right where the problem occurs. This technique
is most useful when you’re sketching things out; eventually, we’ll probably
move this check further down the testing stack into a unit test for the Account
and take it out of the step definition.

• Click HERE to purchase this book now. discuss

Sketching Out the Domain Model • 9

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/04/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

Doing the Simplest Thing

We’re at a decision point here. We’ve effectively finished implementing our
first step definition, but we can’t move on to the next one until we’ve made
some changes to the implementation of the Account class so that the step
passes.

You are
here

Write unit
tests for
Account

Implement
next step
de�nition

Features

System

It’s tempting to pause here, move the Account class into a separate file, and
start driving out the behavior we want using unit tests. We’re going to try to
resist that temptation for now and stay on the outside of the Account class. If
we can get a full tour through the scenario from this perspective, we’ll be
more confident in the design of the class’s interface once we do step inside
and start implementing it.

So, we’ll make a very simple implementation in the Account class that’s obvi-
ously incomplete but is just right enough to make this first step pass. Think
of this like putting up scaffolding on a construction site: we’re going to take
it down eventually, but it will help things to stand up in the meantime.

Change Account to look like this, and the first step should pass:

Download step_definitions_inside/05/features/step_definitions/steps.rb
class Account
def deposit(amount)

@balance = amount
end

def balance
@balance

end
end

10 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/05/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

Good. We still have one issue left on our list, which is the duplication of the
calls to to_i. Now that our step is passing, we can do that refactoring with
confidence.

7.2 Removing Duplication with Transforms

Another issue we have with this step definition is that we have to convert the
string captured by the regular expression into an integer. In fact, now that
we’ve added an assertion, we’ve had to do it twice. As our test suite grows,
we can imagine these calls to to_i littering our step definitions. Even these
four characters count as duplication, so let’s stamp them out.

To do this, we’re going to learn about a new Cucumber method, called Transform.

Transforms work on captured arguments. Each transform is responsible for
converting a certain captured string and turning it into something more
meaningful. For example, we can use this transform to take a matched argu-
ment that contains a number and turn it into a Ruby Fixnum integer:

Download step_definitions_inside/06/features/step_definitions/steps.rb
Transform /^\d+$/ do |number|

number.to_i
end

We define the transform by giving Cucumber a regular expression that
describes the argument we’re interested in transforming. Notice that we’ve
used the ^ and $ to anchor the transform’s regular expression to the ends of
the captured string. This is really important, because we want our transform
to match only captures that are numbers, not just captures that contain a
number somewhere in them.

When Cucumber matches a step definition, it checks for any transforms that
match each argument. When an argument matches a transform, Cucumber
passes the captured string to the transform’s block, and the result of running
the block is what’s then yielded to the step definition. This is shown in Figure
6, Transforms: how do they work?, on page 12.

With the transform in place, we can now remove the duplicated calls to to_i
in our step definition:

Download step_definitions_inside/06/features/step_definitions/steps.rb
Given /^I have deposited \$(\d+) in my account$/ do |amount|

my_account = Account.new
my_account.deposit(amount)
my_account.balance.should eq(amount),

"Expected the balance to be #{amount} but it was #{my_account.balance}"
end

• Click HERE to purchase this book now. discuss

Removing Duplication with Transforms • 11

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/06/features/step_definitions/steps.rb
http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/06/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

Step

nition
Regular Expression

Captured
Argument

Transform

nition
Ruby Code Block

Captured
Argument

Transform

...

...

Figure 6—Transforms: how do they work?

Great! That code looks much cleaner and easier to read. Introducing the
transform has brought in a new kind of duplication, though. The regular
expression that we use to capture the number is now duplicated: we have \d+
both in the step definition and in the transform’s definition. This could be a
problem if we wanted, for example, to start using cents as well as dollars in
our features; we’d have to change the regular expression in the step definition
and in the transform. Fortunately, Cucumber allows us to define the regular
expression once, in the transform, and then reuse it in the step definition,
like this:

Download step_definitions_inside/07/features/step_definitions/steps.rb
CAPTURE_A_NUMBER = Transform /^\d+$/ do |number|
number.to_i

end

Given /^I have deposited \$(#{CAPTURE_A_NUMBER}) in my account$/ do |amount|
my_account = Account.new
my_account.deposit(amount)

12 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/07/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

my_account.balance.should eq(amount),
"Expected the balance to be #{amount} but it was #{my_account.balance}"

end

We store the result of calling Transform in the constant CAPTURE_A_NUMBER and
then use that constant as we build the regular expression in the step defini-
tion. As well as making it easier to change and reuse this capturing regular
expression in the future, this refactoring makes it more obvious to someone
reading the step definition that this argument will be transformed.

We can tidy this up a little further by moving the dollar sign into the trans-
form’s capture. This makes the code more cohesive, because we’re bringing
together the whole regular expression statement for capturing the amount of
funds deposited. It also gives us the option to capture other currencies in the
future.

Download step_definitions_inside/08/features/step_definitions/steps.rb
CAPTURE_CASH_AMOUNT = Transform /^\$(\d+)$/ do |digits|

digits.to_i
end

Given /^I have deposited (#{CAPTURE_CASH_AMOUNT}) in my account$/ do |amount|
my_account = Account.new
my_account.deposit(amount)
my_account.balance.should eq(amount),

"Expected the balance to be #{amount} but it was #{my_account.balance}"
end

Notice that we’ve used a capture group inside the transform to separate the
numbers from the currency symbol. This is how we tell Cucumber that we’re
interested in transforming only that part of the capture we’ve been passed,
so that’s all that will be passed into our block. If we wanted to capture the
currency symbol as well, we could put another capture group around it, and
it would be yielded to the transform’s block as another argument:

encoding: utf-8"
CAPTURE_CASH_AMOUNT = Transform /^(£|\$|€)(\d+)$/ do | currency_symbol, digits |

Obviously we have to create a Currency::Money class to make this work.
Currency::Money.new(digits, currency_symbol)

end

Let’s take another look at our to-do list. Using the transform has cleared up
the final point from the initial code review. As we went along, we collected a
new to-do list item: that we need to implement the Account properly, with unit
tests. Let’s leave that one on the list for now and move on to the next step of
the scenario.

• Click HERE to purchase this book now. discuss

Removing Duplication with Transforms • 13

http://media.pragprog.com/titles/hwcuc/code/step_definitions_inside/08/features/step_definitions/steps.rb
http://pragprog.com/titles/hwcuc
http://forums.pragprog.com/forums/hwcuc

