
Extracted from:

The Cucumber Book, Second Edition
Behaviour-Driven Development

for Testers and Developers

This PDF file contains pages extracted from The Cucumber Book, Second Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

The Cucumber Book, Second Edition
Behaviour-Driven Development

for Testers and Developers

Matt Wynne
Aslak Hellesøy

with Steve Tooke

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-238-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—February 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Software starts as an idea.

Let’s assume it’s a good idea—an idea that could make the world a better
place, or at least make someone some money. The challenge of the software
developer is to take the idea and make it real, into something that actually
delivers that benefit.

The original idea is perfect, beautiful. If the person who has the idea happens
to be a talented software developer, then we might be in luck: the idea could
be turned into working software without ever needing to be explained to
anyone else. More often, though, the person with the original idea doesn’t
have the necessary programming skill to make it real. Now the idea has to
travel from that person’s mind into other people’s. It needs to be communicated.

Most software projects involve teams of several people working collaboratively
together, so high-quality communication is critical to their success. As you
probably know, good communication isn’t just about eloquently describing
your ideas to others; you also need to solicit feedback to ensure you’ve been
understood correctly. This is why agile software teams have learned to work
in small increments, using the software that’s built incrementally as the
feedback that says to the stakeholders “Is this what you mean?”

Even this is not enough. If the developers spend a two-week iteration imple-
menting a misunderstanding, not only have they wasted two weeks of effort,
but they’ve corrupted the integrity of the codebase with concepts and func-
tionality that do not reflect the original idea. Other developers may have
already innocently started to build more code on top of those bad ideas,
making it unlikely they’ll ever completely disappear from the codebase.

We need a filter to protect our codebase from these misunderstood ideas.

Automated Acceptance Tests
The idea of automated acceptance tests originates in eXtreme Programming1

(XP), specifically in the practice of Test-Driven Development2 (TDD).

Instead of a business stakeholder passing requirements to the development
team without much opportunity for feedback, the developer and stakeholder
collaborate to write automated tests that express the outcome that the
stakeholder wants. We call them acceptance tests because they express what
the software needs to do in order for the stakeholder to find it acceptable. The
test fails at the time of writing, because no code has been written yet, but it

1. Extreme Programming Explained: Embrace Change [Bec00]
2. Test-Driven Development: By Example [Bec02]

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwcuc2
http://forums.pragprog.com/forums/hwcuc2

captures what the stakeholder cares about and gives everyone a clear signal
as to what it will take to be done.

These tests are different from unit tests, which are aimed at developers and
help them to drive out and check their software designs. It’s sometimes said
that unit tests ensure you build the thing right, while acceptance tests ensure
you build the right thing.

Automated acceptance testing has been an established practice among good
XP teams for years, but many less experienced agile teams seem to see TDD
as being a programmer activity only. As Lisa Crispin and Janet Gregory point
out in Agile Testing: A Practical Guide for Testers and Agile Teams [CG08],
without the business-facing automated acceptance tests, it’s hard for the
programmers to know which unit tests they need to write. Automated accep-
tance tests help your team to focus, ensuring the work you do each iteration
is the most valuable thing you could possibly be doing. You’ll still make mis-
takes—but you’ll make a lot less of them—meaning you can go home on time
and enjoy the rest of your life.

Behaviour-Driven Development
Behaviour-Driven Development (BDD) builds upon Test-Driven Development
(TDD) by formalizing the good habits of the best TDD practitioners. The best
TDD practitioners work from the outside-in, starting with a failing customer
acceptance test that describes the behavior of the system from the customer’s
point of view. As BDD practitioners, we take care to write the acceptance tests
as examples that anyone on the team can read. We make use of the process
of writing those examples to get feedback from the business stakeholders
about whether we’re setting out to build the right thing before we get started.
As we do so, we make a deliberate effort to develop a shared, ubiquitous lan-
guage for talking about the system.

Ubiquitous Language
As Eric Evans describes in his book Domain Driven Design [Eva03], many
software projects suffer from low-quality communication between the domain
experts and programmers on the team:

“A project faces serious problems when its language is fractured. Domain experts
use their jargon while technical team members have their own language tuned
for discussing the domain in terms of design... Across this linguistic divide, the
domain experts vaguely describe what they want. Developers, struggling to
understand a domain new to them, vaguely understand.”

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwcuc2
http://forums.pragprog.com/forums/hwcuc2

With a conscious effort by the team, a ubiquitous language can emerge that
is used and understood by everyone involved in the project. When the team
uses this language consistently in their conversations, documentation, and
code, the friction of translating between everyone’s different little dialects is
gone, and the chances of misunderstandings are greatly reduced.

Cucumber helps facilitate the discovery and use of a ubiquitous language
within the team, by giving the two sides of the linguistic divide a place where
they can meet. Cucumber tests interact directly with the developers’ code,
but they’re written in a medium and language that business stakeholders
can understand. By working together to write these tests—specifying collabo-
ratively—not only do the team members decide what behavior they need to
implement next, but they learn how to describe that behavior in a common
language that everyone understands.

When we write these tests before development starts, we can explore and
eradicate many misunderstandings long before they ooze their way into the
codebase.

Examples
What makes Cucumber stand out from the crowd of other testing tools is that
it has been designed specifically to ensure the acceptance tests can easily be
read—and written—by anyone on the team. This reveals the true value of
acceptance tests: as a communication and collaboration tool. The easy read-
ability of Cucumber tests draws business stakeholders into the process,
helping you really explore and understand their requirements.

• Click HERE to purchase this book now. discuss

Behaviour-Driven Development • 7

http://pragprog.com/titles/hwcuc2
http://forums.pragprog.com/forums/hwcuc2

Here’s an example of a Cucumber acceptance test:

Feature: Sign up

Sign up should be quick and friendly.

Scenario: Successful sign up

New users should get a confirmation email and be greeted
personally by the site once signed in.

Given I have chosen to sign up
When I sign up with valid details
Then I should receive a confirmation email
And I should see a personalized greeting message

Scenario: Duplicate email

Where someone tries to create an account for an email address
that already exists.

Given I have chosen to sign up
But I enter an email address that has already registered
Then I should be told that the email is already registered
And I should be offered the option to recover my password

Notice how the test is specified as examples of the way we want the system
to behave in particular scenarios. Using examples like this has an unexpect-
edly powerful effect in enabling people to visualize the system before it has
been built. Anyone on the team can read a test like this and tell you whether
it reflects their understanding of what the system should do, and it may well
spark their imagination into thinking of other scenarios that you’ll need to
consider too. Gojko Adzic’s book Specification by Example [Adž11] contains
many case studies of teams who have discovered this and used it to their
advantage.

Acceptance tests written in this style become more than just tests; they are
executable specifications.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwcuc2
http://forums.pragprog.com/forums/hwcuc2

