
Extracted from:

Hands-on Rust
Effective Learning through 2D Game Development and Play

This PDF file contains pages extracted from Hands-on Rust, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Hands-on Rust
Effective Learning through 2D Game Development and Play

Herbert Wolverson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: Vanya Wong
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-816-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Badly wounded by the goblin, the hero reaches into their backpack. Uncorking
a terrible smelling potion and drinking it, their wounds close. Refreshed, the
hero is ready to return to the good fight.

This scene is a staple of modern fantasy games: the adventurer finds an item
on the map, stores it in their inventory, and then uses it later when needed.
Substitute the smelly potion for a healing system controlled by sympathetic
nanobots, and you have a similar game mechanic for a sci-fi game.

With items and inventory systems, you can add variety to your game. Players
can now make tactical decisions based on item use—they’ll need to consider
whether it’s worth the potential injuries to reach an item despite the number
of monsters who might be guarding it.

However, before you can offer items for pickup, you first need to design and
create them.

Designing Items
Item design is fun. You probably have some ideas for the items you want to
include in your game. Taken alongside Chapter 15, Combat Systems and
Loot, on page ?, this chapter will give you the experience you need to add
items to your game and build a unique experience.

Here, you’re going to add two items: Healing Potions and Dungeon Maps.
Healing potions restore the player’s hit points, and dungeon maps reveal the
entire map, allowing the player to carefully plan a route to the Amulet of Yala.
The graphics for these items are included in the dungeonfont.png file.

Let’s start by giving the new items some component definitions.

Describing the Items with Components
You already have most of the components you need to describe the healing
potion and dungeon map items—they need a name, appearance, and position
on the map, which means you can re-use the following existing components:

• Item: Potion or Scroll
• Name: The name that appears in tooltips and the player’s inventory list
• Point: The item’s position on the map
• Render: The visual display component for the item

You also need new component types to describe what each item does.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

The healing potion restores the drinker’s hit points up to their maximum.
You can describe this by creating a ProvidesHealing component. Open components.rs,
and add a new component type:

InventoryAndPowerUps/potions_and_scrolls/src/components.rs
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ProvidesHealing{

pub amount: i32
}

The amount field specifies how much health a given potion will restore. You
could use this value to differentiate between types of healing potion, allowing
you to make potions of varying strength.

The dungeon map reveals the entire level map when activated. You need to
create a component indicating that this effect occurs:

InventoryAndPowerUps/potions_and_scrolls/src/components.rs
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct ProvidesDungeonMap;

Why Not Use an Enum?

Each item you’re adding provides only one effect. It’s tempting to
create a generic UseEffect component containing an enumeration.
Enums can only have one value—if you want to make an item with
multiple effects, you’d be out of luck. It’s a good idea to separate
effects into their own components in case you decide to create an
item that does more than one thing.

Now that you have described your items with components, it’s time to spawn
these items on the map.

Spawning Potions and Maps
Open spawner.rs, and add two item spawning functions, one for each item type:

InventoryAndPowerUps/potions_and_scrolls/src/spawner.rs
pub fn spawn_healing_potion(ecs: &mut World, pos: Point) {

ecs.push(
(Item,

pos,
Render{

color: ColorPair::new(WHITE, BLACK),
glyph : to_cp437('!')

},
Name("Healing Potion".to_string()),
ProvidesHealing{amount: 6}

)
);

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrust/code/InventoryAndPowerUps/potions_and_scrolls/src/components.rs
http://media.pragprog.com/titles/hwrust/code/InventoryAndPowerUps/potions_and_scrolls/src/components.rs
http://media.pragprog.com/titles/hwrust/code/InventoryAndPowerUps/potions_and_scrolls/src/spawner.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

}

pub fn spawn_magic_mapper(ecs: &mut World, pos: Point) {
ecs.push(

(Item,
pos,
Render{

color: ColorPair::new(WHITE, BLACK),
glyph : to_cp437('{')

},
Name("Dungeon Map".to_string()),
ProvidesDungeonMap{}

)
);

}

The item spawning code is similar to the code you used to spawn the Amulet
of Yala in Spawning the Amulet, on page ?, but with a different set of com-
ponents.

Calling spawn_healing_potion() adds a healing potion to the map at the specified
location. Likewise, spawn_magic_mapper() adds a dungeon map to the game level.

Now that you can spawn items, you also need to add the items to the list of
things that might spawn in a designated tile. The spawn_monster() function
handles this for monsters. Make a new function named spawn_entity() that can
spawn your new items as well as monsters:

InventoryAndPowerUps/potions_and_scrolls/src/spawner.rs
pub fn spawn_entity(

ecs: &mut World,
rng: &mut RandomNumberGenerator,
pos: Point

) {
let roll = rng.roll_dice(1, 6);
match roll {

1 => spawn_healing_potion(ecs, pos),
2 => spawn_magic_mapper(ecs, pos),
_ => spawn_monster(ecs, rng, pos)

}
}

The function rolls a six-sided dice. If the dice roll results in a 1, a healing
potion is spawned. A roll of 2 spawns a dungeon map. Otherwise, the
spawn_monster() function is called.

Most items are liberally scattered throughout the game levels, but it’s up to
you how random you want to be versus how deliberate you are when placing
these items. Managing the probabilities for spawns is a good way to tweak

• Click HERE to purchase this book now. discuss

Designing Items • 7

http://media.pragprog.com/titles/hwrust/code/InventoryAndPowerUps/potions_and_scrolls/src/spawner.rs
http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

the balance of your game level. You might decide to make items less frequent
or adjust the weighting of monster types. Probability tables for spawns are
discussed in Chapter 15, Combat Systems and Loot, on page ?.

Open main.rs, and replace all calls to spawn_monster() with spawn_entity(). Use your
editor’s search and replace function to replace all instances of spawn_monster
with spawn_entity.

Run your game now, and you’ll find potions and dungeon maps scattered
throughout the dungeon level:

Now that the items are in the game, it’s time to permit the player to pick
them up.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwrust
http://forums.pragprog.com/forums/hwrust

