
Extracted from:

Rust Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from Rust Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rust Brain Teasers
Exercise Your Mind

Herbert Wolverson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-680509-17-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Henry, my loyal canine coding companion
of thirteen years—who sadly didn’t live to see

the book’s release.

Puzzle 19

Sleepless in Tokio

sleepless/Cargo.toml
[package]
name = "sleepless"
version = "0.1.0"
edition = "2018"

[dependencies]
tokio = { version = "1.7", features = ["full"] }

sleepless/src/main.rs
use tokio::join;
use std::time::Duration;

async fn count_and_wait(n: u64) -> u64 {
println!("Starting {}", n);
std::thread::sleep(Duration::from_millis(n * 100));
println!("Returning {}", n);
n

}

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {

// Join runs multiple tasks concurrently and returns when they all
// complete execution.
join!(count_and_wait(1), count_and_wait(2), count_and_wait(3));
Ok(())

}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrustbrain/code/sleepless/Cargo.toml
http://media.pragprog.com/titles/hwrustbrain/code/sleepless/src/main.rs
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

Starting 1
Returning 1
Starting 2
Returning 2
Starting 3
Returning 3

Discussion
The outcome is surprising because the join macro promises to run the three
instances of count_and_wait concurrently, but the output shows that the tasks
are running sequentially, which tends to surprise newcomers to Rust’s async
system. Understanding the differences between asynchronous and thread
programming can help you avoid pitfalls—and help you pick the right model
for your program.

Asynchronous programs and multithreaded programs operate differently,
each with their own strengths and weaknesses. Asynchronous (Future-based)
tasks aren’t the same as threaded tasks, and they require some care to ensure
that they operate concurrently. However, it’s entirely possible to run an
asynchronous program on one thread.

The diagram on page 9 shows the basic differences between threaded and
asynchronous execution:

In a threaded model, each task operates inside a full operating system-sup-
ported thread. Threads are scheduled independently of other threads and
processes. An asynchronous model stores tasks in a task queue and runs
them until they yield control back to the executing program.

Let’s examine a few approaches to running this teaser concurrently.

Native Threads

Threads are preemptively scheduled by your operating system. While the
thread is suspended, other threads continue to run. A purely threaded version
of this teaser looks like this:

async_threaded/src/main.rs
use std::thread;
use std::time::Duration;

Rust Brain Teasers • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrustbrain/code/async_threaded/src/main.rs
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

Sleep 100ms

Thread 2

Sleep 100ms

Thread 3

Sleep 100ms

Spawn Threads

Join

Operating
System

Scheduler

Threaded Execution:

Task 1

Task 2

Task 3

Spawn Tasks
Asynchronous Execution:

Task Queue

Run until yield

Task 2

Task 3

Task Queue

Run until yield

Task 3

Task Queue

Run until yield

fn count_and_wait(n: u64) -> u64 {
println!("Starting {}", n);
std::thread::sleep(Duration::from_millis(n * 100));
println!("Returning {}", n);
n

}

fn main() -> Result<(), Box<dyn std::error::Error>> {
let a = thread::spawn(|| count_and_wait(1));
let b = thread::spawn(|| count_and_wait(2));
let c = thread::spawn(|| count_and_wait(3));
a.join().unwrap();
b.join().unwrap();
c.join().unwrap();
Ok(())

}

• Click HERE to purchase this book now. discuss

Sleepless in Tokio • 9

http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

The program spawns three threads, and they each run concurrently. Because
the program calls sleep and delays execution on each thread, you’re
almost—subject to having a really busy computer—sure to see the following
output:

Starting 1
Starting 2
Starting 3
Returning 1
Returning 2
Returning 3

Threads provide excellent concurrency, but it comes at a cost. Threads have
their own context maintained by the operating system. Starting a thread
requires a system call, which can be slow if you need to make many threads.
Different operating systems have varying limitations, but there’s a hard limit
to the number of threads you can create—and your OS is generally not
designed to schedule thousands of threads at a time. Native thread syntax
can also be clunkier than an equivalent async join or await call.

Threads start running as soon as you call Thread::spawn. The thread then
runs—scheduled by the operating system—until it’s done or sent a termination
signal.

Asynchronous Tasks

Asynchronous tasks are cooperatively scheduled. The operating system doesn’t
intervene to ensure that each thread gets a fair allocation of execution time.
Tasks run until they yield control. Yielding returns control to the executor—the
code responsible for maintaining the async environment. Tasks yield when:

• The task returns a result (either an error message or a value).
• The task completes execution.
• The task awaits one or more tasks.
• The task explicitly calls yield_now(), suspending itself until the executor

resumes it.

Used correctly, asynchronous task-based code can provide fantastic perfor-
mance. This is especially true for I/O bound programs—programs that have
to wait for databases, files on disk, or other processes to complete. Lightweight
tasks send requests to the other systems and await a result. Each task queue
can then keep processing requests very fast, executing tasks only when the
requested data is ready for them.

Rust Brain Teasers • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

What Is an Executor?

Rust’s async implementation provides everything you need to make
an asynchronous environment, but it only provides the function-
ality required to implement an executor. The executor is responsible
for tracking spawned tasks, executing them, and providing services
such as yield.

Tokio is one of the most popular executors, providing a “batteries-
included” system with functionality available for most common
tasks. The std-async and futures crates are also popular. If you need
specific functionality, you can also write your own executor.

Many executors allocate tasks to queues in a group of threads,
but they don’t have to. Most schedule multiple tasks per thread—
known as M:N green threading—but an async setup can be entirely
single-threaded.

Other platforms use this paradigm as well. NodeJS, Erlang/Elixir,
and various .NET systems provide similar functionality.

As it turns out, asynchronous tasks only provide outstanding performance
if you play by their rules and avoid any blocking calls. Blocking calls suspend
process execution and resume when the call is complete. Furthermore,
blocking calls don’t yield control back to the executor—a call to Thread::sleep
suspends the entire thread’s execution, including the executor. That’s why
the example program runs serially, even though the join macro promises
concurrency.

For the common task of sleeping, Tokio provides a safe, nonblocking call to
make a task pause for the specified time. Replace Thread::sleep the count_and_wait
function with the following code:

tokio::time::sleep(Duration::from_millis(n*100)).await;

Run the program, and you’ll see the same output as the threaded version,
meaning your program ran concurrently.

Asynchronous Blocking Tasks

Sometimes, you need to block execution; for example, when you have a long-
running task, need to communicate with some hardware that doesn’t provide
an async friendly code wrapper, or have to use another library. tokio provides
a function for these situations that won’t stall the execution pipeline:

• Click HERE to purchase this book now. discuss

Sleepless in Tokio • 11

http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

let blocking_task = tokio::spawn_blocking(|| {
// Do something really slow and blocking here

});

// Run the task
blocking_task.await.unwrap();

The spawn_blocking code tells tokio that your task will block, and tokio will spawn
it inside its own thread, suspending the current task until the thread returns.
Your task runs in the background, and your executor can keep processing
other tasks. Notice that the blocking task still awaits a return; Tokio will
awaken the parent task when the blocking task completes.

Long-Running Asynchronous Tasks

Occasionally, you need to perform some heavy computation inside your async
task. A task may call yield_now at any time to suspend operation and let other
tasks run. When the scheduler returns to the task, it’ll continue where it left
off. For example, have a look at this code:

async fn my_big_task() {
for i in 0..1_000_000 {

// Do something intensive with i
tokio::task::yield_now();

}
}

This task will yield control back to the executor after each calculation, which
reduces the stalling effects of your heavy calculation without creating a thread.

Choosing Threaded or Asynchronous Operation

tokio and other systems provide an async version of the more common operations
that require input/output. Reading and writing files, connections to databases,
and even logging are available in executor-friendly formats. Task-based
asynchronous code can be amazingly fast for programs that frequently have
to wait for another system. Web and other servers often benefit significantly
from a task-based structure and provide very high throughput.

Threads are more appropriate for CPU-bound tasks and tasks that must block.
Threads incur their own overhead, but if the threaded task is sufficiently
“heavy” in terms of CPU load, they can outperform asynchronous task-based
systems. In the embedded world, or when writing performance-critical code,
you often want to favor threads because you can control their scheduling
properties (and pin them to individual CPUs)—providing much more of a
guarantee of execution time.

Rust Brain Teasers • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

Rayon: Task-Based Threading

Rayon is a popular Rust crate that implements task-based
threading. Rayon creates a pool of threads that sit idly, waiting to
be given work. When you create a Rayon task, the next available
thread executes it. The task executes independently and doesn’t
stall the pipeline when you make a blocking call. Rayon can provide
the best of both worlds for CPU-heavy tasks—task-based syntax,
easier management, and lower overhead.

Rayon performs very well but is still frequently outperformed on
input/output bound server tasks by a more traditional asyn-
chronous setup. Of course, you can mix the two, but you’ll have
to pay attention to the size of your worker thread pools to ensure
that your executor isn’t starved of CPU time.

Further Reading

Asynchronous Programming in Rust
https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html

Rust Futures
https://github.com/rust-lang/futures-rs

Tokio
https://github.com/rayon-rs/rayon

Async-Std
https://github.com/async-rs/async-std

Rayon
https://github.com/rayon-rs/rayon

• Click HERE to purchase this book now. discuss

Sleepless in Tokio • 13

https://rust-lang.github.io/async-book/01_getting_started/01_chapter.html
https://github.com/rust-lang/futures-rs
https://github.com/rayon-rs/rayon
https://github.com/async-rs/async-std
https://github.com/rayon-rs/rayon
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

