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Puzzle 14

Structure Sizing

structure_sizing/src/main.rs
use std::mem::size_of;

struct VeryImportantMessage {
_message_type: u8,
_destination: u16

}

fn main() {
println!(

"VeryImportantMessage occupies {} bytes.",
size_of::<VeryImportantMessage>()

);
}

Guess the Output

Try to guess what the output is before moving to the next page.
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The program will display the following output:

VeryImportantMessage occupies 4 bytes.

Discussion
_message_type and _destination are sized as you would expect, occupying 1 and 2
bytes of memory, respectively. So, why does VeryImportantMessage occupy 4 bytes
of memory?

By default, Rust makes two promises about the in-memory representation of
your structures:

• Structures may be sized differently than their contents for performance
reasons.

• Structures may store data in a different order internally than you specified
if the optimizer believes it will aid performance.

Most modern CPUs align data on 32-bit boundaries in memory and cache.
Accessing 8 bits (one byte) or 16 bits (two bytes) is fast because the CPU
provides primitives to do so, and the structures can be packed along 32-bit
boundaries.

A 24-bit (3 byte) structure doesn’t naturally align to a 32-bit memory map,
so by default, Rust wastes 8 bits of memory per struct to ensure fast access to
the structure in your computer’s memory. This behavior is especially helpful
when you’re dealing with arrays or other contiguous blocks of 3-byte struc-
tures because every other structure would start at the 24th bit of a 32-bit
block, reducing cache and read efficiency.

Sometimes this behavior can cause problems, though. For example:

• If you’re storing a very large number of 24-bit structures, wasting a byte
per structure might exceed your memory allocation—especially on
embedded systems.

• If you’re interoperating with another language, that language may expect
your structures to be exactly 24 bits in size. Conversely, a server written
in Rust may add padding to structures—surprising the client with padding
bytes.
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• Likewise, if you’re interoperating with other languages, letting Rust rear-
range your data in memory can cause bizarre problems when passing
data to and from the other language.

Constraining Rust’s Optimizer

You can turn off both of Rust’s structure optimizations using a decoration
named #[repr()], which gives you control over how a struct is represented in
memory:

• #[repr(C)] declares that you require interoperability with the C language.
Rust won’t rearrange the content of your structure.

• #[repr(packed)] tells Rust not to waste space on your structure. This can
carry a small performance penalty but guarantees that structures are
exactly the right size.

You can combine these decorations. For example, a structure decorated with
#[repr(C, packed)] won’t rearrange or pad your structure:

#[repr(C, packed)]
struct ReallyThreeBytes {

a: u8,
b: u16

}

fn main() {
println!(
"ReallyThreeBytes occupies {} bytes.",
size_of::<ReallyThreeBytes>()

);
}

This code prints:

ReallyThreeBytes occupies 3 bytes.

Further Reading

repr(Rust)
https://doc.rust-lang.org/nomicon/repr-rust.html

Type Layout
https://doc.rust-lang.org/reference/type-layout.html

Layout of structs and tuples
https://rust-lang.github.io/unsafe-code-guidelines/layout/structs-and-tuples.html
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