
Extracted from:

Rust Brain Teasers
Exercise Your Mind

This PDF file contains pages extracted from Rust Brain Teasers, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Rust Brain Teasers
Exercise Your Mind

Herbert Wolverson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Tammy Coron
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2022 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-680509-17-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—March 2022

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Henry, my loyal canine coding companion
of thirteen years—who sadly didn’t live to see

the book’s release.

Puzzle 14

Structure Sizing

structure_sizing/src/main.rs
use std::mem::size_of;

struct VeryImportantMessage {
_message_type: u8,
_destination: u16

}

fn main() {
println!(

"VeryImportantMessage occupies {} bytes.",
size_of::<VeryImportantMessage>()

);
}

Guess the Output

Try to guess what the output is before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/hwrustbrain/code/structure_sizing/src/main.rs
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

The program will display the following output:

VeryImportantMessage occupies 4 bytes.

Discussion
_message_type and _destination are sized as you would expect, occupying 1 and 2
bytes of memory, respectively. So, why does VeryImportantMessage occupy 4 bytes
of memory?

By default, Rust makes two promises about the in-memory representation of
your structures:

• Structures may be sized differently than their contents for performance
reasons.

• Structures may store data in a different order internally than you specified
if the optimizer believes it will aid performance.

Most modern CPUs align data on 32-bit boundaries in memory and cache.
Accessing 8 bits (one byte) or 16 bits (two bytes) is fast because the CPU
provides primitives to do so, and the structures can be packed along 32-bit
boundaries.

A 24-bit (3 byte) structure doesn’t naturally align to a 32-bit memory map,
so by default, Rust wastes 8 bits of memory per struct to ensure fast access to
the structure in your computer’s memory. This behavior is especially helpful
when you’re dealing with arrays or other contiguous blocks of 3-byte struc-
tures because every other structure would start at the 24th bit of a 32-bit
block, reducing cache and read efficiency.

Sometimes this behavior can cause problems, though. For example:

• If you’re storing a very large number of 24-bit structures, wasting a byte
per structure might exceed your memory allocation—especially on
embedded systems.

• If you’re interoperating with another language, that language may expect
your structures to be exactly 24 bits in size. Conversely, a server written
in Rust may add padding to structures—surprising the client with padding
bytes.

Rust Brain Teasers • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

• Likewise, if you’re interoperating with other languages, letting Rust rear-
range your data in memory can cause bizarre problems when passing
data to and from the other language.

Constraining Rust’s Optimizer

You can turn off both of Rust’s structure optimizations using a decoration
named #[repr()], which gives you control over how a struct is represented in
memory:

• #[repr(C)] declares that you require interoperability with the C language.
Rust won’t rearrange the content of your structure.

• #[repr(packed)] tells Rust not to waste space on your structure. This can
carry a small performance penalty but guarantees that structures are
exactly the right size.

You can combine these decorations. For example, a structure decorated with
#[repr(C, packed)] won’t rearrange or pad your structure:

#[repr(C, packed)]
struct ReallyThreeBytes {

a: u8,
b: u16

}

fn main() {
println!(
"ReallyThreeBytes occupies {} bytes.",
size_of::<ReallyThreeBytes>()

);
}

This code prints:

ReallyThreeBytes occupies 3 bytes.

Further Reading

repr(Rust)
https://doc.rust-lang.org/nomicon/repr-rust.html

Type Layout
https://doc.rust-lang.org/reference/type-layout.html

Layout of structs and tuples
https://rust-lang.github.io/unsafe-code-guidelines/layout/structs-and-tuples.html

• Click HERE to purchase this book now. discuss

Structure Sizing • 9

https://doc.rust-lang.org/nomicon/repr-rust.html
https://doc.rust-lang.org/reference/type-layout.html
https://rust-lang.github.io/unsafe-code-guidelines/layout/structs-and-tuples.html
http://pragprog.com/titles/hwrustbrain
http://forums.pragprog.com/forums/hwrustbrain

