
Extracted from:

Scripted GUI Testing with Ruby

This PDF file contains pages extracted from Scripted GUI Testing with Ruby, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2008 Ian Dees.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-9343561-8-0
Printed on acid-free paper.
Book version: P1.1—January 2012

http://pragprog.com

9.4 Interacting with Ajax

So far, we’ve looked only at straight HTML pages. How do we test something
a little more interactive, like a JavaScript-heavy site?

For this section, we’ll use a simple drag-and-drop list. I’ve included one in
the source code for this book, in dragdrop.html. To use it, you’ll need an open
source JavaScript library called script.aculo.us.10

Download and open the latest source archive from script.aculo.us site. Copy
all the .js files from the lib and src directories to the same folder where you’re
keeping dragdrop.html.

Open dragdrop.html manually in your browser, and click the “Reorder” link. If
the JavaScript files are in the right place, then you should see a bunch of
little black draggable handles, as in Figure 11, Drag and drop, on page ?.

Selenium works best when the browser is going through an actual web server,
rather than just reading files off a disk. For the tests in this section, fire up
a separate command prompt, and run the trivial Ruby-based server included
in this chapter’s source code (web_server.rb).11 I’m assuming you’re running
behind a firewall or taking some other measure to keep people from hitting
this page from the outside world.

Let’s write a couple of tests to exercise the drag-and-drop capabilities of the
joke list. First, here’s the outline of the RSpec description:

require 'joke_list'
describe JokeList do

before do
@list = JokeList.new

end
after do

@list.close
end
tests will go here...

end

For the first example, we’ll just do a single drag to the end of the list:

Download tubes/list_spec.rb
it 'lets me drag an item to the end' do

@list.order('doctor').should == 2
@list.move 2, 5

10. http://script.aculo.us
11. Or you can use your favorite web server package and adjust the port numbers in the

script if you want to use something other than 8000.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/tubes/list_spec.rb
http://script.aculo.us
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

@list.order('doctor').should == 5
end

Let’s go ahead and fill in enough of the JokeList class to drive the web browser
for that example.

Here’s the setup and teardown code:

Download tubes/joke_list.rb
require 'rubygems'
require 'selenium'

class JokeList
def initialize

@browser = Selenium::SeleniumDriver.new \
'localhost', 4444, '*firefox', "http://localhost:8000", 10000

@browser.start
@browser.open 'http://localhost:8000/dragdrop.html'

end

def close
@browser.stop

end
end

JokeList also needs an order() method so we can see where a given joke is in the
list. I’ve given each joke a unique id attribute in the HTML, and Selenium’s
get_element_index() method will take those IDs directly:

Download tubes/joke_list.rb
class JokeList
def order(item)

@browser.get_element_index(item).to_i + 1
end

end

Now we need to add drag and drop. There are a few different ways to do this
in Selenium. If we’re just doing something really simple like moving an item
past the end of a list, we can say this…

@browser.drag_and_drop element, '0, +300'

which will break as soon as we try to test a list that’s taller than 300 pixels.
Coordinates retrieved at runtime are much more resilient than hard-coded
offsets:

last_y = @browser.get_element_position_top(last_element) +
@browser.get_element_height(last_element)

@browser.drag_and_drop element, "0, #{last_y}"

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

But it turns out Selenium lets us specify the drop target directly:

@browser.drag_and_drop_to_object element, last_element

Here’s what it looks like in context:

Download tubes/joke_list.rb
class JokeList

Reorder = '//a[@id="reorder"]'
Draggable = 'selenium.browserbot.findElement("css=.drag").visible()'①

Locked = '!' + Draggable

def move(from_order, to_order)
from_element = "//li[#{from_order}]/span[@class='drag']"
to_element = "//li[#{to_order}]/span[@class='drag']"

@browser.click Reorder
@browser.wait_for_condition Draggable, 2000②

@browser.drag_and_drop_to_object from_element, to_element

@browser.click Reorder
@browser.wait_for_condition Locked, 2000③

end
end

One thing to note is that XPath uses 1 to denote the first item in a list, rather
than the 0 we’re used to from Ruby. To keep things straight, I’m using order
or pos for XPath-style, 1-based positions, and index for Ruby-style, 0-based
indices.

Another thing we need to worry about is timing. When you’re testing an Ajax
page, you often need to wait for a portion of a page to refresh. To simulate a
server round-trip, dragdrop.html pauses slightly before showing the drag handles
when you click the “Reorder” link.

A naïve approach would be to add a fixed delay to our test script. But those
are awfully prone to breakage. Instead, we’re using Selenium’s handy
wait_for_condition() method at ② and ③. This function will wait until a given
JavaScript piece evaluates to true. To access elements on the page Selenium
is controlling, you go through the browserbot attribute, like we’re doing at ①.

We’ll write one more example—something a little more substantial—and move
on. Just for fun, let’s implement an alphabetic sort on the list. An end user
might do something like an insertion sort: visually scan the list for the item

• Click HERE to purchase this book now. discuss

Interacting with Ajax • 7

http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

that should go last, move it to the end, scan for the item that should be next-
to-last, and so forth.12

Download tubes/list_spec.rb
it 'lets me drag multiple items to sort' do
original = @list.items

original.length.downto(1) do |last_pos|
subset = @list.items[0..last_pos - 1]
max_pos = subset.index(subset.max) + 1
@list.move max_pos, last_pos

end

@list.items.should == original.sort
end

This new example requires us to be able to retrieve the current order of the
jokes:

Download tubes/joke_list.rb
class JokeList
def items

num_items = @browser.get_xpath_count('//li').to_i
(1..num_items).map {|i| @browser.get_text "//li[#{i}]/span[2]"}

end
end

There’s a lot more to interactive web pages than just drag and drop, of course.
But we’ve touched on several places where Selenium does fairly well, including
mouse input and waiting for state changes, both cornerstones of rich Internet
apps.

12. Yes, it’s O(n2) comparisons, but that’s how people work.

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/tubes/list_spec.rb
http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

