
Extracted from:

Scripted GUI Testing with Ruby

This PDF file contains pages extracted from Scripted GUI Testing with Ruby, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2008 Ian Dees.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-9343561-8-0
Printed on acid-free paper.
Book version: P1.1—January 2012

http://pragprog.com

All right, no more Mr. Nice Tester. We’ve been coddling our application, gently
running our test scripts the same way each time. That was fine for document-
ing our expectations of the app and getting our test framework up to speed.

But there could be dozens of bugs lurking in the program, waiting to be
exposed if we’d only just do things with a little different order or timing. Let’s
try to trip up the app with a little randomness.

7.1 Keys, Menu, or Mouse?

In all our previous tests, we always exercise each feature the same way. For
example, we always paste text by selecting the Paste item from the Edit menu.
But there are at least two other ways to paste: pressing CTRL+V and using the
right-click menu.

What if there were some weird interaction that caused problems with text
manipulation, but only under certain unusual circumstances involving the
keyboard? A lot of bugs are like that. If your test script always uses the menu,
you’ll never catch it.1

Keeping Things Interesting

Why not teach our script to act a bit differently each time? Let’s start small
with a single feature—Paste, for instance. Each time the test script calls paste(),
we’ll decide based on a random number whether to use the keyboard, menu
bar, or context (right-click) menu:

Download guessing/locknote.rb
srand
$seed ||= srand①

srand $seed
puts "Using random seed #{$seed}"

class LockNote
def paste

case rand(3)
when 0

menu 'Edit', 'Paste'
puts 'Pasting from the menu'

when 1
keystroke VK_CONTROL, 'V'.to_byte
puts 'Pasting from a keyboard shortcut'

when 2
@main_window.click EditControl, :right②

type_in 'P'

1. Your manual tests might catch it, if you don’t treat them like a rote “try all the menus”
exercise.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

puts 'Pasting from a context menu'
end

end
end

At ②, we’ve added a new parameter to Window#click() to let us specify which
mouse button we want to use. As in previous chapters, we identify the edit
area by its window class. (EditControl is just a constant assigned to that hard-
to-remember 'ATL:something' name.)

If we add code like this to some of our other functions, our test script will
behave a little more like a real user: sometimes it’ll use the mouse and
sometimes the keyboard.

There is one potential downside to changing things up on each run like this.
If your test happens to find a bug in the app, you might have trouble repeating
the problem on the next run.

That’s why it’s important to record the value you use to seed Ruby’s pseudo-
random number generator, as we have at ①. Because srand() returns the
previous seed value, it takes three calls to the function to get what we want.

Now, if we need to “play back” a particular sequence, we can put the seed we
want in an external file, say, seed.rb…

Download guessing/seed.rb
$seed = 12345

and use it like this:

C:\> rspec -rseed -rlocknote -fd note_spec.rb

Adding that case/when code to every action that we want to randomize is going
to get old really fast. Let’s think about a way to avoid that kind of duplication.

Action!

What we’re really doing in that case structure is defining all the different ways
the Paste action could be carried out. Other actions in our software (Exit,
Undo, Find) also have multiple ways for the user to perform them.

It makes sense to teach our test library the notion of defining an action, so
we can do something like this:

Download guessing/locknote.rb
def_action :paste,
:menu => ['Edit', 'Paste', :wait],
:keyboard => [VK_CONTROL, 'V'.to_byte],
:context => 'p'

6 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/guessing/seed.rb
http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

The body of def_action() is just our Paste example from earlier, made more
general:

Download guessing/locknote.rb
class LockNote

@@default_way = :random

def self.def_action(name, options, way = nil)
define_method name do

keys = options.keys.sort {|k| k.to_s}

way ||= @@default_way①

key = case way
when nil; keys.last
when :random; keys[rand(keys.size)]
else way

end

action = options[key]

case key
when :menu
menu *action
puts "Performing #{name} from the menu bar"

when :keyboard
keystroke *action
sleep 0.5
puts "Performing #{name} from a keyboard shortcut"

when :context
@main_window.click LockNote::EditControl, :right
sleep 0.5
type_in action
sleep 0.5
puts "Performing #{name} from a context menu"

else
raise "Don't know how to use #{key}"

end
end

end
end

Notice how, at ①, we’ve turned the preferred type of action into what amounts
to a configuration setting. You could use :random for overnight stress testing,
:keyboard to run a few tests on a mouse-free machine, or something else (e.g.,
:preferred) for times when you need predictability.

• Click HERE to purchase this book now. discuss

Keys, Menu, or Mouse? • 7

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

Equipped with this class-level method, we can define several common GUI
actions:

Download guessing/locknote.rb
def_action :undo,
:menu => ['Edit', 'Undo', :wait],
:keyboard => [VK_CONTROL, 'Z'.to_byte]

def_action :cut,
:menu => ['Edit', 'Cut', :wait],
:keyboard => [VK_CONTROL, 'X'.to_byte],
:context => 't'

def_action :copy,
:menu => ['Edit', 'Copy', :wait],
:keyboard => [VK_CONTROL, 'C'.to_byte],
:context => 'c'

def_action :delete,
:keyboard => [VK_BACK],
:context => 'd'

def_action :select_all,
:menu => ['Edit', 'Select All', :wait],
:keyboard => [VK_CONTROL, 'A'.to_byte],
:context => 'a'

Our script has just been given a bit more bug-finding potency, but it’s also
more expressive now. It almost reads like documentation: “The Undo action
can be triggered from the Edit > Undo menu or the CTRL+Z keystroke.”

Decluttering

Although our test library has become more readable, our test report has
become a mess:

Using random seed 12345

The editor
Performing select_all from the menu bar
Performing delete from a keyboard shortcut
Performing select_all from a keyboard shortcut
Performing cut from a keyboard shortcut
Performing select_all from a context menu
Performing delete from a keyboard shortcut
Performing select_all from the menu bar
Performing paste from the menu bar
- supports cutting and pasting text

Finished in 13.809 seconds

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

1 example, 0 failures

Let’s use Ruby’s logging library so we can separate the test report from the
extra info:

Download guessing/locknote.rb
require 'logger'

class SimpleFormatter < Logger::Formatter①

def call(severity, time, progname, msg)
msg2str(msg) + "\n"

end
end

$logger = Logger.new STDERR
$logger.formatter = SimpleFormatter.new②

Logger’s default format is pretty verbose: it includes a time stamp, a logging
level, and so on. At ① and ②, we’ve trimmed it to just a simple description.

Now, if we replace all our calls to puts(), like this one…

puts "Performing #{name} from the menu bar"

with calls to $logger.info(), like this…

$logger.info "Performing #{name} from the menu bar"

then all the extra information not part of the test report will be directed to
wherever the Logger is pointed, in this case STDERR. On Windows, you can
redirect standard error to a file with the 2> operator:

C:\> rspec -rlocknote -fd note_spec.rb 2>actions.txt

If one of our tests suddenly fails in the face of randomness, we now have the
random number seed to re-create it and a detailed record of GUI actions to
help us diagnose it.

• Click HERE to purchase this book now. discuss

Keys, Menu, or Mouse? • 9

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

