Extracted from:

Scripted GUI Testing with Ruby

This PDF file contains pages extracted from Scripted GUI Testing with Ruby, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-
back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

The
Pragmatic
ograminers

Scripted GUI

Testing
with Ruby

Ian Dees

Edited by Jacquelyn Carter

The Facets & %s of Ruby Series

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2008 lan Dees.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-9343561-8-0

Printed on acid-free paper.

Book version: P1.1—January 2012

http://pragprog.com

3.1

RSpec: The Language of Lucid Tests

Let’s talk for a minute about the art of writing good test scripts. If we want
our test code to be clear, it should be written in the application’s problem
domain—that is, using the same concepts that end users see when they use
the software. In the case of LockNote, we should write scripts that deal in
documents and passwords, not menu IDs and edit controls.

We also want to keep our test script from becoming one long, tangled, inter-
dependent mess. So, we’ll start with small, self-contained tests. Once we have
confidence in our building blocks, we can assemble them into more meaningful
tests.

During this process, it’s helpful to think of these little units of test code as
examples of correct behavior. I really mean it when I say we're going to start
small. Our first examples will fit on a cocktail napkin.

The Napkin

Imagine that you're sitting down for coffee with your software designers,
chatting about how the program is going to work. Someone grabs a napkin,
everyone huddles around talking and sketching excitedly, and you end up
with something like Figure 3, The ultimate requirements capture tool, on page
6.

That kind of simplicity is just for sketches, right? Surely we have to abandon
such hand-wavy descriptions when we actually start implementing our tests.

But what if we could write our test code the same way we wrote those notes
on the napkin?
describe the main window

it launches with a welcome message

it exits without a prompt if nothing has changed
it prompts before exiting if the document has changed

With just a handful of little examples like these, we could write about facets
of our application’s behavior in a specialized test description language. The
language is easy to write and clear to read. There’s just one problem: how do
we get from paper to practice?

What Will This Buy Me?

What kinds of bugs will tests catch at this level of detail? Bad requirements,
for one. When you fill in the bodies of those examples, your team will be forced
to consider all kinds of usability edge cases as you describe how the app is
really going to work.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

Figure 3—The ultimate requirements capture tool

You don’t need a test script to do that. A sharp eye and empathy for your
customer will help unearth the same kinds of issues.

But if you do choose to express your ideas as running code, you can press it
into service later in the project as an automated “smoke test” that runs every
time a developer checks in code.

Introducing RSpec

The notation we've been using on this napkin is as real as Ruby. It’s called
RSpec.' It’s implemented as a Ruby library, but you can also think of it as a
language of its own—a test description language that just happens to be built
on Ruby’s strong metaprogramming foundation.”

The philosophy behind RSpec is that a good test should do more than exercise
the code; it should also communicate its intentions clearly. RSpec provides
two motifs for helping us write clear tests:

1. hitp://rspec.info

2. Metaprogramming is simply “programs writing programs.” It’s the technique that makes
Ruby such a great platform for coders to build their own languages.

« Click HERE to purchase this book now. discuss

http://rspec.info
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

RSpec: The Language of Lucid Tests ® 7

* The describe/it notation provides an overall structure for your test script.
¢ The should verb is how you write the individual pass/fail tests.

describe/it

A few paragraphs ago, we saw that a good test script is more like a series of
examples of correct behavior than an exhaustive specification. RSpec encour-
ages this view of testing. Each example in RSpec is expressed as a sentence
beginning with it, as in “it self-destructs when I hit the red button.” We gather
each group of related examples that describe one feature in, fittingly enough,
a describe block.

It takes only a few keystrokes to transform our cocktail napkin into a set of
RSpec examples:
describe 'The main window' do

it 'launches with a welcome message'

it 'exits without a prompt if nothing has changed'

it 'prompts before exiting if the document has changed'
end

The code looks almost like it depends on some kind of fancy English language
processing, but really it’s just Ruby. describe() and it() are plain oI’ Ruby func-
tions supplied by the RSpec library.

We'll eventually fill in each of those it descriptions with specific tests, with
help from RSpec’s should idiom.

should
In some testing toolkits, you're expected to use a system of “assertions” to

write your pass/fail tests, something like this:

ASSERT_EQUAL (windowTitle, "My Program");

RSpec is a little different. Rather than asking you to make your style of writing
more like programming, it bends the programming language to look more like
natural writing. The previous example would look like this in RSpec:

window title.should == 'My Program'

29

“Window title should equal 'My Program.” You could practically read this
code aloud. You could even show it to someone who’s never seen Ruby before,
and they’d probably understand what it does.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

8e

With RSpec, the should() and should_not() methods are available to every object
in Ruby.’ All of the following are valid tests in RSpec:

3. Thanks to Ruby’s “open classes,” whose definitions can be modified on the fly. This
flexibility is what makes RSpec possible.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

RSpec: The Language of Lucid Tests ® 9

(2 + 2).should ==

1.should be < 2

['this', 'list'].should not be empty

{:color => 'red'}.should have key(:color)

Any test written with should() will raise an exception (and show up in the test
report as a failed test) if its condition turns out to be false. Similarly, its
companion method, should_not(), fails on true conditions.

Take a look at those last two tests. be_empty tells RSpec to call the empty?()
method of the array. have key calls the hash table’s has key?() method. This
technique works for any method, not just empty?(). In general, be_xyz calls xyz?(),
and have _xyz calls has_xyz?().

Trying It
Let’s grab the RSpec library and take it for a test-drive:

C:\> gem install rspec --version "~> 2.7"

Now our cocktail napkin translation is more than just a nicely formatted
description of behavior. It’s running code—try it! Save the code snippet (from
describe/it, on page 7) as note_spec.rb, and run it with the spec executable, like

C:\> rspec --format=doc note_spec.rb

The main window
launches with a welcome message (PENDING: Not Yet Implemented)
exits without a prompt if nothing has changed (PENDING: Not Yet Implemented)
prompts before exiting if the document has changed (PENDING: Not Yet Implemented)

Finished in 0.017212 seconds
3 examples, 0 failures, 3 pending
RSpec has noticed that our tests haven’'t been implemented yet. But we've

definitely made progress. Three empty tests are better than no tests at all.
Now, let’s fill in those details.

Putting It to Work

So far, our test script is merely an outline of what we will be doing. It describes
which parts of the program we'’re testing, but it doesn’t contain any pass/fail
tests yet. Let’s change that.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

3.2

®

® ®

10 ¢

Remember our cautionary tale from the beginning of the chapter? We want
to write our tests in the vocabulary of LockNote or JunqueNote and leave the
platform-specific calls for a different part of the code. So, we're going to
imagine that someone has lovingly provided a note-taking API just for us and
code to that API. (Guess who’s going to “lovingly provide” this API? Heaven
helps those who help themselves....)

Replace the first it clause in your script with the following:

Download with_rspec/note_spec.rb

it 'launches with a welcome message' do
note = Note.new
note.text.should include('Welcome"')
note.exit!

end

The code at @ will create a new window (by launching the application). We'll
add the implementation in a few minutes, using the automation techniques
from the previous chapter.

At @, we add our first actual pass/fail test. We want to make sure the word
“Welcome” appears somewhere in the editable portion of the main window.

Finally, we shut down the app at ®. We'll follow the Ruby tradition of giving
“dangerous” methods like exit!() an exclamation point. We want whoever is
reading this code to know that the exiting program will discard the active
document and steamroller over any save prompts along the way.

Now, when we run our script, we see the following:

1) The main window launches with a welcome message
Failure/Error: note = Note.new
NameError:
uninitialized constant Note
./note spec.rb:4:in " (root)'

No surprise there. We've started tossing around this new term in our code,
Note, without telling Ruby what it is. It’s time to teach Ruby all about our note
taking.

Building a Library

Up to this point, we’ve been working downward from our high-level test con-
cepts to the specifics of LockNote and JunqueNote. Now it's time to build
upward from the Windows and Java API calls we learned in Chapter 2, An

into a coherent library usable from our tests.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/with_rspec/note_spec.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

Building a Library ® 11

We want to do for our GUI tests what RSpec’s creators did for testing in
general: provide a way to express concepts clearly. RSpec will be our “gold
standard” of beauty: we're going to shoot for a note-taking API clean enough
to be at home inside an RSpec test.

A Touch of Class

The code that we need to implement a clean API is already there in our two
..._basics.rb files; it just needs to be touched up a bit and organized into a Ruby
class. We'll start with an empty class called Note in a new file named after the
app we're testing (locknote.rb or junquenote.rb):

class Note
end

Later, we’ll add each chunk of platform-specific calls as we find a good home
for it.

To tell RSpec which program we're testing, we pass the name of the app with
the -r option. So on Windows, we have this:

C:\> rspec -rlocknote -fd note_spec.rb

And for the cross-platform version, we have this:
$ jruby -S rspec -rjunquenote -fd note_spec.rb
What are the results when we try it?

1) The main window launches with a welcome message
Failure/Error: note.text.should include('Welcome')
NoMethodError:

undefined method “text' for #<Note:0x34c57971>
./note spec empty.rb:8:in " (root)'

As we expected, RSpec was able to create a Note object, but it couldn’t do
anything more. We haven'’t yet taught it to get the current document’s text.
In fact, we haven’'t even taught it to launch the application yet. Let’s do so
Nnow.

Starting Up

Reorganizing the code into a class will be pretty much the same whether
you’re playing the Windows or JRuby version of our home game.

Creating a new Note object should cause the app to launch. So, we’ll move our
window creation code from the previous chapter into Note’s initialize() method:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

Kplatform definitions>»
class Note
def initialize
«code up through the first ‘puts‘»
end
Kmore to come...»
end

I won’t show all the code here, because it’s nearly an exact repeat of what
you wrote in the previous chapter. You just put all your require lines (and
Jemmy imports, for you JRuby readers) into the “platform definitions” section
at the top and paste everything else up to the first puts into the body of initialize().

We'll use the main_window variable in some of the other methods we're defining,
so we need to “promote” it to an attribute of the Note class. Replace main_window
with @main_window everywhere you see it.

Now that we've taught our Note class how to launch the app, let’s move on to
text entry.

Typing Into the Window

You've already written the code to simulate typing. It just needs to be made
a bit more general. Grab the handful of lines that deal with keyboard input
—Ilook for “this is some text”—and paste them into a new type in() method inside
the Note class:

def type in(message)

«Ktyping code here>»
end

Of course, you’'ll probably want to replace the "this is some text” string literal
with the message parameter that our top-level test script passes in. That takes
care of writing text—how about reading it back?

Getting Text Back from the Window

Up until now, we've been driving the GUI from our script, but we haven’t
retrieved any data from it yet. To change that state of affairs, we’ll need one
more platform-specific technique. It's an easy one, though, so I'm going to
present the Windows and JRuby variants back-to-back.

Windows: The WM_GETTEXT Message

First, we want to drill down into LockNote’s user interface and find the editable
area that contains the document’s text. This text area is a child window of
the main window. To grab hold of it, we’ll use FindWindowEx(). It's like the

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

Building a Library ® 13

FindWindow() function we used before, but with a couple of extra parameters
—including the parent window option we need.

Once we've found the edit control, we’ll send it the WM_GETTEXT message to find
out what'’s inside it. You've seen the PostMessage() call for sending a message
to a window. Its cousin SendMessage() is similar but is guaranteed to wait until
the window actually responds to our message.

The meanings of SendMessage()’s parameters are different for every Windows
message. For WM_GETTEXT, the last two parameters are the maximum size string
we can accept and a pointer to the string where we want Windows to put the
text we're asking for.

Here’s what these two new API calls look like in use. Add the following code
inside your LockNote class:

Download with_rspec/locknote.rb

def text
find window ex = user32 'FindWindowEx', ['L', 'L', 'P', 'P'], 'L’
send_message = user32 'SendMessage', ['L', 'L', 'L', 'P'], 'L’

edit = find window ex.call @main window, 0, 'ATL:00434310', nil

buffer "\0' * 2048
length = send message.call edit, WM GETTEXT, buffer.length, buffer

return length == 0 ? '' : buffer[0..length - 1]
end

As another concession to the manual memory management of the Windows
world, we have to presize our buffer at @, just like we did with get_window_rect()
in the previous chapter.

JRuby: The text Property

The JRuby approach to getting text is similar to the Windows one: we look
for the editable text area (which belongs to the main window) and quiz it about
its contents. Jemmy’s |TextAreaOperator provides the text property for this purpose:

Download with_rspec/junquenote.rb

def text
edit = JTextAreaOperator.new @main_window
edit.text

end

The code at @ should look familiar; the type_in() method you wrote in the
previous section contains one just like it. This is a sign that our code needs
some cleanup, which we’ll get to in the next chapter.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/with_rspec/locknote.rb
http://media.pragprog.com/titles/idgtr/code/with_rspec/junquenote.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

In the previous chapter, we mentioned that a window class identifies whether a given
window is a button, edit control, dialog box, or whatnot.

The basic controls that come with Windows have names like edit or button. This window
class’s name, ATL:00434310, is a little more complicated—it's a customization from
Microsoft’s open source Windows Template Library, used by LockNote’s developers
to write the application.

Closing the Window

OK, Windows and Swing readers should both be ready for one final step in
this chapter. Paste the remainder of your code into this skeleton:

def exit!
® begin
...remainder of code...

@ @prompted = true
® rescue
end
end

Windows users, you'll have to add one extra line at @: paste in the definition
of find_window() again just before the begin. We’ll remove the need for this repeti-
tion soon.

Our higher-level test code will need to know if the program prompted us to
save our document. So, we're going to wait for a few seconds for a save prompt
to appear. If we see a prompt, we remember this event in the @prompted
attribute at @. If not, we’ll get a TimeoutError (or NativeException in JRuby).

An exception isn’t necessarily a bad thing in this case. It could be that we’re
exiting the app without changing anything—no need for a save prompt then.
We just catch the exception at @, and @prompted stays nil.

So, how do we use @prompted in our test script? As we discussed earlier, any
test that reads should have xyz will call a function named has xyz?() and check
its return value for true or false/nil.

def has prompted?
@prompted
end

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

Two More Tests

Building a Library ® 15

We now have all the tools required to fill in the other two examples:

Download with_rspec/note_spec.rb

it 'exits without a prompt if nothing has changed' do
note = Note.new
note.exit!
note.should not have prompted

end

it 'prompts before exiting if the document has changed' do
note = Note.new
note.type in "changed"
note.exit!
note.should have prompted
end

There you have it: one cocktail napkin turned into a working test plan.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/idgtr/code/with_rspec/note_spec.rb
http://pragprog.com/titles/idgtr
http://forums.pragprog.com/forums/idgtr

