
Extracted from:

Programming Erlang
Software for a Concurrent World

This PDF file contains pages extracted from Programming Erlang, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise
identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.





Chapter 8

Concurrent Programming
In this chapter, we’ll be talking about processes. These are small self-

contained virtual machines that can evaluate Erlang functions.

I’m sure you’ve met processes before, but only in the context of operat-

ing systems.

In Erlang, processes belong to the programming language and NOT the

operating system.

In Erlang:

• Creating and destroying processes is very fast.

• Sending messages between processes is very fast.

• Processes behave the same way on all operating systems.

• We can have very large numbers of processes.

• Processes share no memory and are completely independent.

• The only way for processes to interact is through message passing.

For these reasons Erlang is sometimes called a pure message passing

language.

If you haven’t programmed with processes before, you might have heard

rumors that it is rather difficult. You’ve probably heard horror stories

of memory violations, race conditions, shared-memory corruption, and

the like. In Erlang, programming with processes is easy. It just needs

three new primitives: spawn, send, and receive.



THE CONCURRENCY PRIMITIVES 144

8.1 The Concurrency Primitives

Everything we’ve learned about sequential programming is still true

for concurrent programming. All we have to do is to add the following

primitives:

Pid = spawn(Fun)

Creates a new concurrent process that evaluates Fun. The new

process runs in parallel with the caller. spawn returns a Pid (short

for process identifier). You can use Pid to send messages to the

process.

Pid ! Message

Sends Message to the process with identifier Pid. Message sending

is asynchronous. The sender does not wait but continues with

what it was doing. ! is called the send operator.

Pid ! M is defined to be M—the message sending primitive ! returns

the message itself. Because of this, Pid1 ! Pid2 ! ... ! M means send

the message M to all the processes Pid1, Pid2, and so on.

receive ... end

Receives a message that has been sent to a process. It has the

following syntax:

receive
Pattern1 [when Guard1] ->

Expressions1;
Pattern2 [when Guard2] ->

Expressions2;

...

end

When a message arrives at the process, the system tries to match

it against Pattern1 (with possible guard Guard1); if this succeeds, it

evaluates Expressions1. If the first pattern does not match, it tries

Pattern2, and so on. If none of the patterns matches, the message

is saved for later processing, and the process waits for the next

message. This is described in more detail in Section 8.6, Selective

Receive, on page 155.

The patterns and guards used in a receive statement have exactly

the same syntactic form and meaning as the patterns and guards

that we use when we define a function.

CLICK HERE to purchase this book now.



A SIMPLE EXAMPLE 145

8.2 A Simple Example

Remember how we wrote the area/1 function in Section 3.1, Modules,

on page 45? Just to remind you, the code that defined the function

looked like this:

Download geometry.erl

area({rectangle, Width, Ht}) -> Width * Ht;

area({circle, R}) -> 3.14159 * R * R.

Now we’ll rewrite the same function as a process:

Download area_server0.erl

-module(area_server0).
-export([loop/0]).

loop() ->

receive
{rectangle, Width, Ht} ->

io:format("Area of rectangle is ~p~n",[Width * Ht]),

loop();

{circle, R} ->

io:format("Area of circle is ~p~n", [3.14159 * R * R]),
loop();

Other ->

io:format("I don't know what the area of a ~p is ~n",[Other]),
loop()

end.

We can create a process that evaluates loop/0 in the shell:

1> Pid = spawn(fun area_server0:loop/0).
<0.36.0>
2> Pid ! {rectangle, 6, 10}.
Area of rectangle is 60

{rectangle,6,10}
3> Pid ! {circle, 23}.
Area of circle is 1661.90

{circle,23}

4> Pid ! {triangle,2,4,5}.
I don't know what the area of a {triangle,2,4,5} is

{triangle,2,4,5}

What happened here? In line 1 we created a new parallel process.

spawn(Fun) creates a parallel process that evaluates Fun; it returns Pid,

which is printed as <0.36.0>.

CLICK HERE to purchase this book now.



CLIENT-SERVER—AN INTRODUCTION 146

In line 2 we sent a message to the process. This message matches the

first pattern in the receive statement in loop/0:

loop() ->

receive
{rectangle, Width, Ht} ->

io:format("Area of rectangle is ~p~n",[Width * Ht]),

loop()

...

Having received a message, the process prints the area of the rectangle.

Finally, the shell prints {rectangle, 6, 10}. This is because the value of Pid

! Msg is defined to be Msg. If we send the process a message that it

doesn’t understand, it prints a warning. This is performed by the Other

->... code in the receive statement.

8.3 Client-Server—An Introduction

Client-server architectures are central to Erlang. Traditionally, client-

server architectures have involved a network that separates a client

from a server. Most often there are multiple instances of the client and

a single server. The word server often conjures up a mental image of

some rather heavyweight software running on a specialized machine.

In our case, a much lighter-weight mechanism is involved. The client

and server in a client-server architecture are separate processes, and

normal Erlang message passing is used for communication between

the client and the server. Both client and server can run on the same

machine or on two different machines.

The words client and server refer to the roles that these two processes

have; the client always initiates a computation by sending a request to

the server. The server computes a reply and sends a response to the

client.

Let’s write our first client-server application. We’ll start by making some

small changes to the program we wrote in the previous section.

In the previous program, all that we needed was to send a request to

a process that received and printed that request. Now, what we want

to do is send a response to the process that sent the original request.

The trouble is we do not know to whom to send the response. To send a

response, the client has to include an address to which the server can

reply. This is like sending a letter to somebody—if you want to get a

reply, you had better include your address in the letter!

CLICK HERE to purchase this book now.



CLIENT-SERVER—AN INTRODUCTION 147

So, the sender must include a reply address. This can be done by

changing this:

Pid ! {rectangle, 6, 10}

to the following:

Pid ! {self(),{rectangle, 6, 10}}

self() is the PID of the client process.

To respond to the request, we have to change the code that receives the

requests from this:

loop() ->

receive
{rectangle, Width, Ht} ->

io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop()

...

to the following:

loop() ->

receive
{From, {rectangle, Width, Ht}} ->

From ! Width * Ht,

loop();
...

Note how we now send the result of our calculation back to the process

identified by the From parameter. Because the client set this parameter

to its own process ID, it will receive the result.

The process that sends the initial request is usually called a client.

The process that receives the request and sends a response is called a

server.

Finally, we add a small utility function called rpc (short for remote pro-

cedure call) that encapsulates sending a request to a server and waiting

for a response:

Download area_server1.erl

rpc(Pid, Request) ->

Pid ! {self(), Request},
receive

Response ->

Response
end.

CLICK HERE to purchase this book now.



CLIENT-SERVER—AN INTRODUCTION 148

Putting all of this together, we get the following:

Download area_server1.erl

-module(area_server1).
-export([loop/0, rpc/2]).

rpc(Pid, Request) ->

Pid ! {self(), Request},
receive

Response ->

Response

end.

loop() ->

receive
{From, {rectangle, Width, Ht}} ->

From ! Width * Ht,

loop();
{From, {circle, R}} ->

From ! 3.14159 * R * R,

loop();

{From, Other} ->
From ! {error,Other},

loop()

end.

We can experiment with this in the shell:

1> Pid = spawn(fun area_server1:loop/0).
<0.36.0>

2> area_server1:rpc(Pid, {rectangle,6,8}).
48
3> area_server1:rpc(Pid, {circle,6}).
113.097

4> area_server1:rpc(Pid, socks).
{error,socks}

There’s a slight problem with this code. In the function rpc/2, we send

a request to the server and then wait for a response. But we do not wait

for a response from the server; we wait for any message. If some other

process sends the client a message while it is waiting for a response

from the server, it will misinterpret this message as a response from

the server. We can correct this by changing the form of the receive

statement to this:

loop() ->
receive

{From, ...} ->

From ! {self(), ...}

loop()
...

CLICK HERE to purchase this book now.



CLIENT-SERVER—AN INTRODUCTION 149

and by changing rpc to the following:

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive
{Pid, Response} ->

Response

end.

How does this work? When we have entered the rpc function, Pid is

bound to some value, so in the pattern {Pid, Response}, Pid is bound, and

Response is unbound. This pattern will match only a message contain-

ing a two-tuple1 where the first element is Pid. All other messages will

be queued. (receive provides what is called selective receive, which I’ll

describe after this section.)

With this change, we get the following:

Download area_server2.erl

-module(area_server2).
-export([loop/0, rpc/2]).

rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
{Pid, Response} ->

Response

end.

loop() ->
receive

{From, {rectangle, Width, Ht}} ->

From ! {self(), Width * Ht},
loop();

{From, {circle, R}} ->

From ! {self(), 3.14159 * R * R},
loop();

{From, Other} ->

From ! {self(), {error,Other}},

loop()
end.

This works as expected:

1> Pid = spawn(fun area_server2:loop/0).
<0.37.0>

3> area_server2:rpc(Pid, {circle, 5}).
78.5397

1. N-tuple means a tuple of size N, so two-tuple is a tuple of size 2.

CLICK HERE to purchase this book now.



HOW LONG DOES IT TAKE TO CREATE A PROCESS? 150

There’s one final improvement we can make. We can hide the spawn and

rpc inside the module. This is good practice because we will be able to

change the internal details of the server without changing the client

code. Finally, we get this:

Download area_server_final.erl

-module(area_server_final).
-export([start/0, area/2]).

start() -> spawn(fun loop/0).

area(Pid, What) ->

rpc(Pid, What).

rpc(Pid, Request) ->

Pid ! {self(), Request},

receive
{Pid, Response} ->

Response

end.

loop() ->

receive
{From, {rectangle, Width, Ht}} ->

From ! {self(), Width * Ht},

loop();

{From, {circle, R}} ->
From ! {self(), 3.14159 * R * R},

loop();

{From, Other} ->
From ! {self(), {error,Other}},

loop()

end.

To run this, we call the functions start/0 and area/2 (where before we

called spawn and rpc). These are better names that more accurately

describe what the server does:

1> Pid = area_server_final:start().
<0.36.0>
2> area_server_final:area(Pid, {rectangle, 10, 8}).
80

4> area_server_final:area(Pid, {circle, 4}).
50.2654

8.4 How Long Does It Take to Create a Process?

At this point, you might be worried about performance. After all, if we’re

creating hundreds or thousands of Erlang processes, we must be pay-

ing some kind of penalty. Let’s find out how much.

CLICK HERE to purchase this book now.



HOW LONG DOES IT TAKE TO CREATE A PROCESS? 151

To investigate this, we’ll time how long it takes to spawn a large number

of processes. Here’s the program:

Download processes.erl

-module(processes).

-export([max/1]).

%% max(N)

%% Create N processes then destroy them

%% See how much time this takes

max(N) ->

Max = erlang:system_info(process_limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime),

statistics(wall_clock),

L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Time1} = statistics(runtime),

{_, Time2} = statistics(wall_clock),

lists:foreach(fun(Pid) -> Pid ! die end, L),
U1 = Time1 * 1000 / N,

U2 = Time2 * 1000 / N,

io:format("Process spawn time=~p (~p) microseconds~n",
[U1, U2]).

wait() ->

receive
die -> void

end.

for(N, N, F) -> [F()];

for(I, N, F) -> [F()|for(I+1, N, F)].

Here are the results I obtained on the computer I’m using to write this

book, a 2.40GHz Intel Celeron with 512MB of memory running Ubuntu

Linux:

1> processes:max(20000).
Maximum allowed processes:32768

Process spawn time=3.50000 (9.20000) microseconds
ok

2> processes:max(40000).
Maximum allowed processes:32768
=ERROR REPORT==== 26-Nov-2006::14:47:24 ===

Too many processes

...

Spawning 20,000 processes took an average of 3.5 µs/process of CPU

time and 9.2 µs of elapsed (wall-clock) time.

CLICK HERE to purchase this book now.



RECEIVE WITH A TIMEOUT 152

Note that I used the BIF erlang:system_info(process_limit) to find the max-

imum allowed number of processes. Note that some of these are re-

served, so your program cannot actually use this number. When we

exceed the system limit, the system crashes with an error report (com-

mand 2).

The system limit is set to 32,767 processes; to exceed this limit, you

have to start the Erlang emulator with the +P flag as follows:

$ erl +P 500000
1> processes:max(50000).
Maximum allowed processes:500000

Process spawn time=4.60000 (10.8200) microseconds
ok

2> processes:max(200000).
Maximum allowed processes:500000

Process spawn time=4.10000 (10.2150) microseconds
3> processes:max(300000).
Maximum allowed processes:500000

Process spawn time=4.13333 (73.6533) microseconds

In the previous example, I set the system limit to half a million pro-

cesses. We can see that the process spawn time is essentially con-

stant between 50,000 to 200,000 processes. At 300,000 processes, the

CPU time per spawn process remains constant, but the elapsed time

increases by a factor of seven. I can also hear my disk chattering away.

This is sure sign that the system is paging and that I don’t have enough

physical memory to handle 300,000 processes.

8.5 Receive with a Timeout

Sometimes a receive statement might wait forever for a message that

never comes. This could be for a number of reasons. For example, there

might be a logical error in our program, or the process that was going

to send us a message might have crashed before it sent the message.

To avoid this problem, we can add a timeout to the receive statement.

This sets a maximum time that the process will wait to receive a mes-

sage. The syntax is as follows:

receive
Pattern1 [when Guard1] ->

Expressions1;

Pattern2 [when Guard2] ->
Expressions2;

...

after Time ->

Expressions
end

CLICK HERE to purchase this book now.



RECEIVE WITH A TIMEOUT 153

If no matching message has arrived within Time milliseconds of entering

the receive expression, then the process will stop waiting for a message

and evaluate Expressions.

Receive with Just a Timeout

You can write a receive consisting of only a timeout. Using this, we

can define a function sleep(T), which suspends the current process for T

milliseconds.

Download lib_misc.erl

sleep(T) ->
receive
after T ->

true
end.

Receive with Timeout Value of Zero

A timeout value of 0 causes the body of the timeout to occur immedi-

ately, but before this happens, the system tries to match any patterns

in the mailbox. We can use this to define a function flush_buffer, which

entirely empties all messages in the mailbox of a process:

Download lib_misc.erl

flush_buffer() ->

receive
_Any ->

flush_buffer()

after 0 ->

true
end.

Without the timeout clause, flush_buffer would suspend forever and not

return when the mailbox was empty. We can also use a zero timeout to

implement a form of “priority receive,” as follows:

Download lib_misc.erl

priority_receive() ->
receive

{alarm, X} ->

{alarm, X}

after 0 ->
receive

Any ->

Any
end

end.

CLICK HERE to purchase this book now.



RECEIVE WITH A TIMEOUT 154

If there is not a message matching {alarm, X} in the mailbox, then pri-

ority_receive will receive the first message in the mailbox. If there is no

message at all, it will suspend in the innermost receive and return the

first message it receives. If there is a message matching {alarm, X}, then

this message will be returned immediately. Remember that the after

section is checked only after pattern matching has been performed on

all the entries in the mailbox.

Without the after 0 statement, the alarm message would not be matched

first.

Note: Using large mailboxes with priority receive is rather inefficient, so

if you’re going to use this technique, make sure your mailboxes are not

too large.

receive with Timeout Value of Infinity

If the timeout value in a receive statement is the atom infinity, then the

timeout will never trigger. This might be useful for programs where the

timeout value is calculated outside the receive statement. Sometimes

the calculation might want to return an actual timeout value, and other

times it might want to have the receive wait forever.

Implementing a Timer

We can implement a simple timer using receive timeouts.

The function stimer:start(Time, Fun) will evaluate Fun (a function of zero

arguments) after Time ms. It returns a handle (which is a PID), which

can be used to cancel the timer if required.

Download stimer.erl

-module(stimer).
-export([start/2, cancel/1]).

start(Time, Fun) -> spawn(fun() -> timer(Time, Fun) end).

cancel(Pid) -> Pid ! cancel.

timer(Time, Fun) ->
receive

cancel ->

void
after Time ->

Fun()

end.

CLICK HERE to purchase this book now.



SELECTIVE RECEIVE 155

We can test this as follows:

1> Pid = stimer:start(5000, fun() -> io:format("timer event~n") end).
<0.42.0>

timer event

Here I waited more than five seconds so that the timer would trigger.

Now I’ll start a timer and cancel it before the timer period has expired:

2> Pid1 = stimer:start(25000, fun() -> io:format("timer event~n") end).
<0.49.0>

3> stimer:cancel(Pid1).
cancel

8.6 Selective Receive

So far we have glossed over exactly how send and receive work. send

does not actually send a message to a process. Instead, send sends a

message to the mailbox of the process, and receive tries to remove a

message from the mailbox.

Each process in Erlang has an associated mailbox. When you send a

message to the process, the message is put into the mailbox. The only

time the mailbox is examined is when your program evaluates a receive

statement:

receive
Pattern1 [when Guard1] ->

Expressions1;
Pattern2 [when Guard1] ->

Expressions1;

...
after

Time ->

ExpressionTimeout
end

receive works as follows:

1. When we enter a receive statement, we start a timer (but only if an

after section is present in the expression).

2. Take the first message in the mailbox and try to match it against

Pattern1, Pattern2, and so on. If the match succeeds, the message

is removed from the mailbox, and the expressions following the

pattern are evaluated.

3. If none of the patterns in the receive statement matches the first

message in the mailbox, then the first message is removed from

the mailbox and put into a “save queue.” The second message

CLICK HERE to purchase this book now.



REGISTERED PROCESSES 156

in the mailbox is then tried. This procedure is repeated until a

matching message is found or until all the messages in the mail-

box have been examined.

4. If none of the messages in the mailbox matches, then the process

is suspended and will be rescheduled for execution the next time a

new message is put in the mailbox. Note that when a new message

arrives, the messages in the save queue are not rematched; only

the new message is matched.

5. As soon as a message has been matched, then all messages that

have been put into the save queue are reentered into the mailbox

in the order in which they arrived at the process. If a timer was

set, it is cleared.

6. If the timer elapses when we are waiting for a message, then evalu-

ate the expressions ExpressionsTimeout and put any saved messages

back into the mailbox in the order in which they arrived at the

process.

8.7 Registered Processes

If we want to send a message to a process, then we need to know its PID.

This is often inconvenient since the PID has to be sent to all processes

in the system that want to communicate with this process. On the other

hand, it is very secure; if you don’t reveal the PID of a process, other

processes cannot interact with it in any way.

Erlang has a method for publishing a process identifier so that any pro-

cess in the system can communicate with this process. Such a process

is called a registered process. There are four BIFs for managing regis-

tered processes:

register(AnAtom, Pid)

Register the process Pid with the name AnAtom. The registration

fails if AnAtom has already been used to register a process.

unregister(AnAtom)

Remove any registrations associated with AnAtom.

Note: If a registered process dies it will be automatically unregis-

tered.

whereis(AnAtom) -> Pid | undefined

Find out whether AnAtom is registered. Return the process iden-

tifier Pid, or return the atom undefined if no process is associated

with AnAtom.

CLICK HERE to purchase this book now.



REGISTERED PROCESSES 157

registered() -> [AnAtom::atom()]

Return a list of all registered processes in the system.

Using register, we can revise the example in Section 8.2, A Simple Exam-

ple, on page 145, and we can try to register the name of the process

that we created:

1> Pid = spawn(fun area_server0:loop/0).
<0.51.0>

2> register(area, Pid).
true

Once the name has been registered, we can send it a message like this:

3> area ! {rectangle, 4, 5}.
Area of rectangle is 20

{rectangle,4,5}

A Clock

We can use register to make a registered process that represents a

clock:

Download clock.erl

-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) ->

register(clock, spawn(fun() -> tick(Time, Fun) end)).

stop() -> clock ! stop.

tick(Time, Fun) ->
receive

stop ->

void

after Time ->
Fun(),

tick(Time, Fun)

end.

The clock will happily tick away until you stop it:

3> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true

TICK {1164,553538,392266}

TICK {1164,553543,393084}
TICK {1164,553548,394083}

TICK {1164,553553,395064}

4> clock:stop().
stop

CLICK HERE to purchase this book now.



HOW DO WE WRITE A CONCURRENT PROGRAM? 158

8.8 How Do We Write a Concurrent Program?

When I write a concurrent program, I almost always start with some-

thing like this:

Download ctemplate.erl

-module(ctemplate).
-compile(export_all).

start() ->
spawn(fun() -> loop([]) end).

rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
{Pid, Response} ->

Response

end.

loop(X) ->
receive

Any ->

io:format("Received:~p~n",[Any]),
loop(X)

end.

The receive loop is just any empty loop that receives and prints any

message that I send to it. As I develop the program, I’ll start send-

ing messages to the processes. Because I start with no patterns in the

receive loop that match these messages, I’ll get a printout from the

code at the bottom of the receive statement. When this happens, I add

a matching pattern to the receive loop and rerun the program. This

technique largely determines the order in which I write the program: I

start with a small program and slowly grow it, testing it as I go along.

8.9 A Word About Tail Recursion

Take a look at the receive loop in the area server that we wrote earlier:

Download area_server_final.erl

loop() ->
receive

{From, {rectangle, Width, Ht}} ->

From ! {self(), Width * Ht},

loop();
{From, {circle, R}} ->

From ! {self(), 3.14159 * R * R},

loop();

CLICK HERE to purchase this book now.



SPAWNING WITH MFAS 159

{From, Other} ->

From ! {self(), {error,Other}},
loop()

end.

If you look carefully, you’ll see that every time we receive a message,

we process the message and then immediately call loop() again. Such a

procedure is called tail-recursive. A tail-recursive function can be com-

piled so that the last function call in a sequence of statements can be

replaced by a simple jump to the start of the function being called. This

means that a tail-recursive function can loop forever without consum-

ing stack space.

Suppose we wrote the following (incorrect) code:

Line 1 loop() ->
- {From, {rectangle, Width, Ht}} ->
- From ! {self(), Width * Ht},
- loop(),
5 someOtherFunc();
- {From, {circle, R}} ->
- From ! {self(), 3.14159 * R * R},
- loop();
- ...

10 end

In line 4, we call loop(), but the compiler must reason that “after I’ve

called loop(), I have to return to here, since I have to call someOther-

Func() in line 5.” So, it pushes the address of someOtherFunc onto the

stack and jumps to the start of loop. The problem with this is that

loop() never returns; instead, it just loops forever. So, each time we

pass line 4, another return address gets pushed onto the control stack,

and eventually the system runs out of space.

Avoiding this is easy; if you write a function F that never returns (such

as loop()), make sure that you never call anything after calling F, and

don’t use F in a list or tuple constructor.

8.10 Spawning with MFAs

Most programs we write use spawn(Fun) to create a new process. This

is fine provided we don’t want to dynamically upgrade our code. Some-

times we want to write code that can be upgraded as we run it. If we

want to make sure that our code can be dynamically upgraded, then

we have to use a different form of spawn.

CLICK HERE to purchase this book now.



PROBLEMS 160

spawn(Mod, FuncName, Args)

This creates a new process. Args is a list of arguments of the form

[Arg1, Args2, ..., ArgN]. The newly created process starts evaluating

Mod:FuncName(Arg1, Arg2, ..., ArgN).

Spawning a function with an explicit module, function name, and argu-

ment list (called an MFA) is the proper way to ensure that our running

processes will be correctly updated with new versions of the module

code if it is compiled while it is being used. The dynamic code upgrade

mechanism does not work with spawned funs. It works only with explic-

itly named MFAs. For more details, read Section E.4, Dynamic Code

Loading, on page 437.

8.11 Problems

1. Write a function start(AnAtom, Fun) to register AnAtom as spawn(Fun).

Make sure your program works correctly in the case when two

parallel processes simultaneously evaluate start/2. In this case,

you must guarantee that one of these processes succeeds and the

other fails.

2. Write a ring benchmark. Create N processes in a ring. Send a mes-

sage round the ring M times so that a total of N * M messages get

sent. Time how long this takes for different values of N and M.

Write a similar program in some other programming language you

are familiar with. Compare the results. Write a blog, and publish

the results on the Internet!

That’s it—you can now write concurrent programs!

Next we’ll look at error recovery and see how we can write fault-tolerant

concurrent programs using three more concepts: links, signals, and

trapping process exits. That’s in the next chapter.

CLICK HERE to purchase this book now.



The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Erlang
http://pragmaticprogrammer.com/titles/jaerlang

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community
http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/jaerlang.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com


