
Extracted from:

Programming Erlang
Software for a Concurrent World

This PDF file contains pages extracted from Programming Erlang, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise
identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 2

Getting Started
2.1 Overview

As with every learning experience, you’ll pass through a number of

stages on your way to Erlang mastery. Let’s look at the stages we cover

in this book and the things you’ll experience along the way.

Stage 1: I’m Not Sure...

As a beginner, you’ll learn how to start the system, run commands in

the shell, compile simple programs, and become familiar with Erlang.

(Erlang is a small language, so this won’t take you long.)

Let’s break this down into smaller chunks. As a beginner, you’ll do the

following:

• Make sure you have a working Erlang system on your computer.

• Learn to start and stop the Erlang shell.

• Discover how to enter expressions into the shell, evaluate them,

and understand the results.

• See how to create and modify programs using your favorite text

editor.

• Experiment with compiling and running your programs in the

shell.

Stage 2: I’m Comfortable with Erlang

By now you’ll have a working knowledge of the language. If you run

into language problems, you’ll have the background to make sense of

Chapter 5, Advanced Sequential Programming, on page 88.

OVERVIEW 21

At this stage you’ll be familiar with Erlang, so we’ll move on to more

interesting topics:

• You’ll pick up more advanced uses of the shell. The shell can do a

lot more than we let on when you were first learning it. (For exam-

ple, you can recall and edit previous expressions. This is covered

in Section 6.5, Command Editing in the Erlang Shell, on page 132.)

• You’ll start learning the libraries (called modules in Erlang). Most

of the programs I write can be written using five modules: lists, io,

file, dict, and gen_tcp; therefore, we’ll be using these modules a lot

throughout the book.

• As your programs get bigger, you’ll need to learn how to automate

compiling and running them. The tool of choice for this is make.

We’ll see how to control the process by writing a makefile. This is

covered in Section 6.4, Automating Compilation with Makefiles, on

page 129.

• The bigger world of Erlang programming uses an extensive library

collection called OTP.1 As you gain experience with Erlang, you’ll

find that knowing OTP will save you lots of time. After all, why

reinvent the wheel if someone has already written the functional-

ity you need? We’ll learn the major OTP behaviors, in particular

gen_server. This is covered in Section 16.2, Getting Started with

gen_server, on page 303.

• One of the main uses of Erlang is writing distributed programs,

so now is the time to start experimenting. You can start with the

examples in Chapter 10, Distributed Programming, on page 177,

and you can extend them in any way you want.

Stage 2.5: I May Learn Some Optional Stuff

You don’t have to read every chapter in this book the first time through.

Unlike most of the languages you have probably met before, Erlang is

a concurrent programming language—this makes it particularly suited

for writing distributed programs and for programming modern multi-

core and SMP2 computers. Most Erlang programs will just run faster

when run on a multicore or SMP machine.

Erlang programming involves using a programming paradigm that I call

concurrency-oriented programming (COP).

1. Open Telecom Platform.
2. Symmetric multiprocessing.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

OVERVIEW 22

When you use COP, you break down problems and identify the natural

concurrency in their solutions. This is an essential first step in writing

any concurrent program.

Stage 3: I’m an Erlang Master

By now you’ve mastered the language and can write some useful dis-

tributed programs. But to achieve true mastery, you need to learn even

more:

• Mnesia. The Erlang distribution comes complete with a built-in

fast, replicated database called Mnesia. It was originally designed

for telecom applications where performance and fault tolerance

are essential. Today it is used for a wide range of nontelecom appli-

cations.

• Interfacing to code written in other programming languages, and

using linked-in drivers. This is covered in Section 12.4, Linked-in

Drivers, on page 223.

• Full use of the OTP behaviors-building supervision trees, start

scripts, and so on. This is covered in Chapter 18, Making a System

with OTP, on page 337.

• How to run and optimize your programs for a multicore computer.

This is covered in Chapter 20, Programming Multicore CPUs, on

page 369.

The Most Important Lesson

There’s one rule you need to remember throughout this book: program-

ming is fun. And I personally think programming distributed applica-

tions such as chat programs or instant messaging applications is a

lot more fun than programming conventional sequential applications.

What you can do on one computer is limited, but what you can do

with networks of computers becomes unlimited. Erlang provides an

ideal environment for experimenting with networked applications and

for building production-quality systems.

To help you get started with this, I’ve mixed some real-world applica-

tions in among the technical chapters. You should be able to take these

applications as starting points for your own experiments. Take them,

modify them, and deploy them in ways that I hadn’t imagined, and I’ll

be very happy.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

INSTALLING ERLANG 23

2.2 Installing Erlang

Before you can do anything, you have to make sure you have a func-

tioning version of Erlang on your system. Go to a command prompt,

and type erl:

$ erl
Erlang (BEAM) emulator version 5.5.2 [source] ... [kernel-poll:false]

Eshell V5.5.2 (abort with ^G)
1>

On a Windows system, the command erl works only if you have installed

Erlang and changed the PATH environment variable to refer to the pro-

gram. Assuming you’ve installed the program in the standard way,

you’ll invoke Erlang through the Start > All Programs > Erlang OTP

menu. In Appendix B, on page 398, I’ll describe how I’ve rigged Erlang

to run with MinGW and MSYS.

Note: I’ll show the banner (the bit that says “Erlang (BEAM) ... (abort

with ∧G)”) only occasionally. This information is useful only if you want

to report a bug. I’m just showing it here so you won’t get worried if you

see it and wonder what it is. I’ll leave it out in most of the examples

unless it’s particularly relevant.

If you see the shell banner, then Erlang is installed on your system.

Exit from it (press Ctrl+G, followed by the letter Q, and then hit Enter

or Return).3 Now you can skip ahead to Section 2.3, The Code in This

Book, on page 25.

If instead you get an error saying erl is an unknown command, you’ll

need to install Erlang on your box. And that means you’ll need to make

a decision—do you want to use a prebuilt binary distribution, use a

packaged distribution (on OS X), build Erlang from the sources, or use

the Comprehensive Erlang Archive Network (CEAN)?

Binary Distributions

Binary distributions of Erlang are available for Windows and for Linux-

based operating systems. The instructions for installing a binary sys-

tem are highly system dependent. So, we’ll go through these system by

system.

3. Or give the command q() in the shell.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

INSTALLING ERLANG 24

Windows

You’ll find a list of the releases at http://www.erlang.org/download.html.

Choose the entry for the latest version, and click the link for the Win-

dows binary—this points to a Windows executable. Click the link, and

follow the instructions. This is a standard Windows install, so you

shouldn’t have any problems.

Linux

Binary packages exist for Debian-based systems. On a Debian-based

system, issue the following command:

> apt-get install erlang

Installing on Mac OS X

As a Mac user, you can install a prebuilt version of Erlang using the

MacPorts system, or you can build Erlang from source. Using MacPorts

is marginally easier, and it will handle updates over time. However,

MacPorts can also be somewhat behind the times when it comes to

Erlang releases. During the initial writing up this book, for example,

the MacPorts version of Erlang was two releases behind the then cur-

rent version. For this reason, I recommend you just bite the bullet and

install Erlang from source, as described in the next section. To do this,

you’ll need to make sure you have the developer tools installed (they’re

on the DVD of software that came with your machine).

Building Erlang from Source

The alternative to a binary installation is to build Erlang from the

sources. There is no particular advantage in doing this for Windows

systems since each new release comes complete with Windows binaries

and all the sources. But for Mac and Linux platforms, there can be

some delay between the release of a new Erlang distribution and the

availability of a binary installation package. For any Unix-like OS, the

installation instructions are the same:

1. Fetch the latest Erlang sources.4 The source will be in a file with

a name such as otp_src_R11B-4.tar.gz (this file contains the fourth

maintenance release of version 11 of Erlang).

4. From http://www.erlang.org/download.html.

CLICK HERE to purchase this book now.

http://www.erlang.org/download.html
http://www.erlang.org/download.html
http://www.pragmaticprogrammer.com/titles/jaerlang

THE CODE IN THIS BOOK 25

2. Unpack, configure, make, and install as follows:

$ tar -xzf otp_src_R11B-4.tar.gz

$ cd otp_src_R11B-4

$./configure

$ make
$ sudo make install

Note: You can use the command ./configure - -help to review the available

configuration options before building the system.

Use CEAN

The Comprehensive Erlang Archive Network (CEAN) is an attempt to

gather all the major Erlang applications in one place with a common

installer. The advantage of using CEAN is that it manages not only

the basic Erlang system but a large number of packages written in

Erlang. This means that as well as being able to keep your basic Erlang

installation up-to-date, you’ll be able to maintain your packages as well.

CEAN has precompiled binaries for a large number of operating systems

and processor architectures. To install a system using CEAN, go to

http://cean.process-one.net/download/, and follow the instructions. (Note

that some readers have reported that CEAN might not install the Erlang

compiler. If this happens to you, then start the Erlang shell and give the

command cean:install(compiler). This will install the compiler.)

2.3 The Code in This Book

Most of the code snippets we show come from full-length, running

examples, which you can download.5 To help you find your way, if a

code listing in this book can be found in the download, there’ll be a bar

above the snippet (just like the one here):

Download shop1.erl

-module(shop1).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) * N + total(T);

total([]) -> 0.

This bar contains the path to the code within the download. If you’re

reading the PDF version of this book and your PDF viewer supports

hyperlinks, you can click the bar, and the code should appear in a

browser window.

5. From http://pragmaticprogrammer.com/titles/jaerlang/code.html.

CLICK HERE to purchase this book now.

http://cean.process-one.net/download/
http://media.pragprog.com/titles/jaerlang/code/shop1.erl
http://pragmaticprogrammer.com/titles/jaerlang/code.html
http://www.pragmaticprogrammer.com/titles/jaerlang

STARTING THE SHELL 26

2.4 Starting the Shell

Now let’s get started. We can interact with Erlang using an interactive

tool called the shell. Once we’ve started the shell, we can type expres-

sions, and the shell will display their values.

If you’ve installed Erlang on your system (as described in Section 2.2,

Installing Erlang, on page 23), then the Erlang shell, erl, will also be

installed. To run it, open a conventional operating system command

shell (cmd on Windows or a shell such as bash on Unix-based systems).

At the command prompt, start the Erlang shell by typing erl:

! $ erl
Erlang (BEAM) emulator version 5.5.1 [source] [async-threads:0] [hipe]

Eshell V5.5.1 (abort with ^G)
" 1> % I'm going to enter some expressions in the shell ..
1> 20 + 30.
$ 50
% 2>

Let’s look at what we just did:

! This is the Unix command to start the Erlang shell. The shell

responds with a banner telling you which version of Erlang you

are running.

" The shell printed the prompt 1>, and then we typed a comment.

The percent (%) character indicates the start of a comment. All

the text from the percent sign to the end of line is treated as a

comment and is ignored by the shell and the Erlang compiler.

The shell repeated the prompt 1> since we hadn’t entered a com-

plete command. At this point we entered the expression 20 + 30,

followed by a period and a carriage return. (Beginners often for-

get to enter the period. Without it, Erlang won’t know that we’ve

finished our expression, and we won’t see the result displayed.)

$ The shell evaluated the expression and printed the result (50, in

this case).

% The shell printed out another prompt, this time for command

number 2 (because the command number increases each time a

new command is entered).

Have you tried running the shell on your system? If not, please stop and

try it now. If you just read the text without typing in the commands, you

might think that you understand what is happening, but you will not

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

SIMPLE INTEGER ARITHMETIC 27

have transferred this knowledge from your brain to your fingertips—

programming is not a spectator sport. Just like any form of athletics,

you have to practice a lot.

Enter the expressions in the examples exactly as they appear in the

text, and then try experimenting with the examples and changing them

a bit. If they don’t work, stop and ask yourself what went wrong. Even

an experienced Erlang programmer will spend a lot of time interacting

with the shell.

As you get more experienced, you’ll learn that the shell is a really pow-

erful tool. Previous shell commands can be recalled (with Ctrl+P and

Ctrl+N) and edited (with emacs-like editing commands). This is covered

in Section 6.5, Command Editing in the Erlang Shell, on page 132. Best

of all, when you start writing distributed programs, you will find that

you can attach a shell to a running Erlang system on a different Erlang

node in a cluster or even make an secure shell (ssh) connection directly

to an Erlang system running on a remote computer. Using this, you can

interact with any program on any node in a system of Erlang nodes.

Warning: You can’t type everything you read in this book into the shell.

In particular, you can’t type the code that’s listed in the Erlang program

files into the shell. The syntactic forms in an .erl file are not expressions

and are not understood by the shell. The shell can evaluate only Erlang

expressions and doesn’t understand anything else. In particular, you

can’t type module annotations into the shell; these are things that start

with a hyphen (such as -module, -export, and so on).

The remainder of this chapter is in the form of a number of short dia-

logues with the Erlang shell. A lot of the time I won’t explain all the

details of what is going on, since this would interrupt the flow of the

text. In Section 5.4, Miscellaneous Short Topics, on page 100, I’ll fill in

the details.

2.5 Simple Integer Arithmetic

Let’s evaluate some arithmetic expressions:

1> 2 + 3 * 4.
14
2> (2 + 3) * 4.
20

Important: You’ll see that this dialogue starts at command number 1

(that is the shell printed, 1>). This means we have started a new Erlang

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

SIMPLE INTEGER ARITHMETIC 28

Is the Shell Not Responding?

If the shell didn’t respond after you typed a command, then
you might have forgotten to end the command with a period
followed by carriage return (called dot-whitespace).

Another thing that might have gone wrong is that you’ve
started to type something that is quoted (that is, starts with a
single or double quote mark) but have not yet typed a match-
ing closing quote mark that should be the same as the open
quote mark.

If any of these happen, then the best thing to do is type an
extra closing quote, followed by dot-whitespace.

If things go really wrong and the system won’t respond at all,
then just press Ctrl+C (on Windows, Ctrl+Break). You’ll see the
following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

Now just press A to abort the current Erlang session.

Advanced: You can start and stop multiple shells. See Sec-
tion 6.7, The Shell Isn’t Responding, on page 135 for details.

shell. Every time you see a dialogue that starts with 1>, you’ll have to

start a new shell if you want to exactly reproduce the examples in the

book. When an example starts with a prompt number that is greater

than 1, this means the shell session is continued from the previous

examples so you don’t have to start a new shell.

Note: If you’re going to type these examples into the shell as you read

the text (which is absolutely the best way to learn), then you might

like to take a quick peek at Section 6.5, Command Editing in the Erlang

Shell, on page 132.

You’ll see that Erlang follows the normal rules for arithmetic expres-

sions, so 2 + 3 * 4 means 2 + (3 * 4) and not (2 + 3) * 4.

Erlang uses arbitrary-sized integers for performing integer arithmetic.

In Erlang, integer arithmetic is exact, so you don’t have to worry about

arithmetic overflows or not being able to represent an integer in a cer-

tain word size.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

VARIABLES 29

Variable Notation

Often we will want to talk about the values of particular vari-
ables. For this I’ll use the notation Var !→ Value, so, for example,
A !→ 42 means that the variable A has the value 42. When there
are several variables, I’ll write {A !→ 42, B !→ true ... }, meaning
that A is 42, B is true, and so on.

Why not try it? You can impress your friends by calculating with very

large numbers:

3> 123456789 * 987654321 * 112233445566778899 * 998877665544332211.
13669560260321809985966198898925761696613427909935341

You can enter integers in a number of ways.6 Here’s an expression that

uses base 16 and base 32 notation:

4> 16#cafe * 32#sugar.
1577682511434

2.6 Variables

How can you store the result of a command so that you can use it later?

That’s what variables are for. Here’s an example:

1> X = 123456789.
123456789

What’s happening here? First, we assign a value to the variable X; then,

the shell prints the value of the variable.

Note: All variable names must start with an uppercase letter.

If you want to see the value of a variable, just enter the variable name:

2> X.
123456789

Now that X has a value, you can use it:

3> X*X*X*X.
232305722798259244150093798251441

6. See Section 5.4, Integers, on page 113.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

VARIABLES 30

Single Assignment Is Like Algebra

When I went to school, my math teacher said, “If there’s an X
in several different parts in the same equation, then all the X s
mean the same thing.” That’s how we can solve equations: if
we know that X+Y=10 and X-Y=2, then X will be 6 and Y will be
4 in both equations.

But when I learned my first programming language, we were
shown stuff like this:

X = X + 1

Everyone protested, saying “you can’t do that!” But the
teacher said we were wrong, and we had to unlearn what we
learned in math class. X isn’t a math variable: it’s like a pigeon
hole/little box....

In Erlang, variables are just like they are in math. When you asso-
ciate a value with a variable, you’re making an assertion—a
statement of fact. This variable has that value. And that’s that.

However, if you try to assign a different value to the variable X, you’ll

get a somewhat brutal error message:

4> X = 1234.
=ERROR REPORT==== 11-Sep-2006::20:32:49 ===

Error in process <0.31.0> with exit value:
{{badmatch,1234},[{erl_eval,expr,3}]}

** exited: {{badmatch,1234},[{erl_eval,expr,3}]} **

What on Earth is going on here? Well, to explain it, I’m going to have to

shatter two assumptions you have about the simple statement X = 1234:

• First, X is not a variable, at least not in the sense that you’re used

to in languages such as Java and C.

• Second, = is not an assignment operator.

This is probably one of the trickiest areas when you’re new to Erlang,

so let’s spend a couple of pages digging deeper.

Variables That Don’t Vary

Erlang has single assignment variables. As the name suggests, sin-

gle assignment variables can be given a value only once. If you try to

change the value of a variable once it has been set, then you’ll get an

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

VARIABLES 31

error (in fact, you’ll get the badmatch error we just saw). A variable that

has had a value assigned to it is called a bound variable; otherwise, it

is called an unbound variable. All variables start off unbound.

When Erlang sees a statement such as X = 1234, it binds the variable X

to the value 1234. Before being bound, X could take any value: it’s just

an empty hole waiting to be filled. However, once it gets a value, it holds

on to it forever.

At this point, you’re probably wondering why we use the name variable.

This is for two reasons:

• They are variables, but their value can be changed only once (that

is, they change from being unbound to having a value).

• They look like variables in conventional programming languages,

so when we see a line of code that starts like this:
X = ...

then our brains say, “Aha, I know what this is; X is a variable, and

= is an assignment operator.” And our brains are almost right: X is

almost a variable, and = is almost an assignment operator.

Note: The use of ellipses (...) in Erlang code examples just means

“code I’m not showing.”

In fact, = is a pattern matching operator, which behaves like assignment

when X is an unbound variable.

Finally, the scope of a variable is the lexical unit in which it is defined.

So if X is used inside a single function clause, its value does not “escape”

to outside the clause. There are no such things as global or private

variables shared by different clauses in the same function. If X occurs

in many different functions, then all the values of X are different.

Pattern Matching

In most languages, = denotes an assignment statement. In Erlang, how-

ever, = denotes a pattern matching operation. Lhs = Rhs really means this:

evaluate the right side (Rhs), and then match the result against the pat-

tern on the left side (Lhs).

Now a variable, such as X, is a simple form of pattern. As we said ear-

lier, variables can be given a value only once. The first time we say X =

SomeExpression, Erlang says to itself, “What can I do to make this state-

ment true?” Because X doesn’t yet have a value, it can bind X to the

value of SomeExpression, the statement becomes valid, and everyone is

happy.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

VARIABLES 32

Then, if at a later stage we say X = AnotherExpression, then this will suc-

ceed only if SomeExpression and AnotherExpression are identical. Here’s an

example of this:

Line 1 1> X = (2+4).
- 6
- 2> Y = 10.
- 10
5 3> X = 6.
- 6
- 4> X = Y.
- =ERROR REPORT==== 27-Oct-2006::17:25:25 ===
- Error in process <0.32.0> with exit value:

10 {{badmatch,10},[{erl_eval,expr,3}]}
- 5> Y = 10.
- 10
- 6> Y = 4.
- =ERROR REPORT==== 27-Oct-2006::17:25:46 ===

15 Error in process <0.37.0> with exit value:
- {{badmatch,4},[{erl_eval,expr,3}]}
- 7> Y = X.
- =ERROR REPORT==== 27-Oct-2006::17:25:57 ===
- Error in process <0.40.0> with exit value:

20 {{badmatch,6},[{erl_eval,expr,3}]}

Here’s what happened: In line 1 the system evaluated the expression

2+4, and the answer was 6. So after this line, the shell has the following

set of bindings: {X !→ 6}. After line 3 has been evaluated, we have the

bindings {X !→ 6, Y !→ 10}.

Now we come to line 5. Just before we evaluate the expression, we know

that X !→ 6, so the match X = 6 succeeds.

When we say X = Y in line 7, our bindings are {X !→ 6, Y !→ 10}, and

therefore the match fails and an error message is printed.

Expressions 4 to 7 either succeed or fail depending upon the values of

X and Y. Now is a good time to stare hard at these and make sure you

really understand them before going any further.

At this stage it may seem that I am belaboring the point. All the patterns

to the left of the “=” are just variables, either bound or unbound, but

as we’ll see later, we can make arbitrarily complex patterns and match

them with the “=” operator. I’ll be returning to this theme after we have

introduced tuples and lists, which are used for storing compound data

items.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

VARIABLES 33

Why Does Single Assignment Make My Programs Better?

In Erlang a variable is just a reference to a value—in the Erlang imple-

mentation, a bound variable is represented by a pointer to an area of

storage that contains the value. This value cannot be changed.

The fact that we cannot change a variable is extremely important and

is unlike the behavior of variables in imperative languages such as C or

Java.

Let’s see what can happen when you’re allowed to change a variable.

Let’s define a variable X as follows:

1> X = 23.
23

Now we can use X in computations:

2> Y = 4 * X + 3.
95

Now suppose we could change the value of X (horrors):

3> X = 19.

Fortunately, Erlang doesn’t allow this. The shell complains like crazy

and says this:

=ERROR REPORT==== 27-Oct-2006::13:36:24 ===

Error in process <0.31.0> with exit value:
{{badmatch,19},[{erl_eval,expr,3}]}

This just means that X cannot be 19 since we’ve already said it was 23.

But just suppose we could do this; then the value of Y would be wrong in

the sense that we can no longer interpret statement 2 as an equation.

Moreover, if X could change its value at many different points in the

program and something goes wrong, it might be difficult saying which

particular value of X had caused the failure and at exactly which point

in the program it had acquired the wrong value.

In Erlang, variable values cannot be changed after they have been set.

This simplifies debugging. To understand why this is true, we must ask

ourselves what an error is and how an error makes itself known.

One rather common way that you discover that your program is incor-

rect is that a variable has an unexpected value. If this is the case, then

you have to discover exactly the point in your program where the vari-

able acquired the incorrect value. If this variable changed values many

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

FLOATING-POINT NUMBERS 34

Absence of Side Effects Means We Can Parallelize Our Programs

The technical term for memory areas that can be modified is
mutable state. Erlang is a functional programming language
and has nonmutable state.

Much later in the book we’ll look at how to program multicore
CPUs. When it comes to programming multicore CPUs, the con-
sequences of having nonmutable state are enormous.

If you use a conventional programming language such as C
or Java to program a multicore CPU, then you will have to
contend with the problem of shared memory. In order not to
corrupt shared memory, the memory has to be locked while
it is accessed. Programs that access shared memory must not
crash while they are manipulating the shared memory.

In Erlang, there is no mutable state, there is no shared mem-
ory, and there are no locks. This makes it easy to parallelize our
programs.

times and at many different points in your program, then finding out

exactly which of these changes was incorrect can be extremely difficult.

In Erlang there is no such problem. A variable can be set only once and

thereafter never changed. So once we know which variable is incorrect,

we can immediately infer the place in the program where the variable

became bound, and this must be where the error occurred.

At this point you might be wondering how it’s possible to program with-

out variables. How can you express something like X = X + 1 in Erlang?

The answer is easy. Invent a new variable whose name hasn’t been used

before (say X1), and write X1 = X + 1.

2.7 Floating-Point Numbers

Let’s try doing some arithmetic with floating-point numbers:

1> 5/3.
1.66667

2> 4/2.
2.00000

3> 5 div 3.
1

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

ATOMS 35

4> 5 rem 3.
2
5> 4 div 2.
2

6> Pi = 3.14159.
3.14159

7> R = 5.
5

8> Pi * R * R.
78.5397

Don’t get confused here. In line 1 the number at the end of the line is

the integer 3. The period signifies the end of the expression and is not

a decimal point. If I had wanted a floating-point number here, I’d have

written 3.0.

“/” always returns a float; thus, 4/2 evaluates to 2.0000 (in the shell). N

div M and N rem M are used for integer division and remainder; thus, 5

div 3 is 1, and 5 rem 3 is 2.

Floating-point numbers must have a decimal point followed by at least

one decimal digit. When you divide two integers with “/”, the result is

automatically converted to a floating-point number.

2.8 Atoms

In Erlang, atoms are used to represent different non-numerical con-

stant values.

If you’re used to enumerated types in C or Java, then you will already

have used something very similar to atoms whether you realize it or

not.

C programmers will be familiar with the convention of using symbolic

constants to make their programs self-documenting. A typical C pro-

gram will define a set of global constants in an include file that consists

of a large number of constant definitions; for example, there might be

a file glob.h containing this:

#define OP_READ 1

#define OP_WRITE 2
#define OP_SEEK 3

...

#define RET_SUCCESS 223

...

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

ATOMS 36

Typical C code using such symbolic constants might read as follows:

#include "glob.h"

int ret;

ret = file_operation(OP_READ, buff);

if(ret == RET_SUCCESS) { ... }

In a C program the values of these constants are not interesting; they’re

interesting here only because they are all different and they can be

compared for equality.

The Erlang equivalent of this program might look like this:

Ret = file_operation(op_read, Buff),

if
Ret == ret_success ->

...

In Erlang, atoms are global, and this is achieved without the use of

macro definitions or include files.

Suppose you want to write a program that manipulates days of the

week. How would you represent a day in Erlang? Of course, you’d use

one of the atoms monday, tuesday,

Atoms start with lowercase letters, followed by a sequence of alphanu-

meric characters or the underscore (_) or at (@) sign.7 For example: red,

december, cat, meters, yards, joe@somehost, and a_long_name.

Atoms can also be quoted with a single quotation mark (’). Using the

quoted form, we can create atoms that start with uppercase letters

(which otherwise would be interpreted as variables) or that contain

nonalphanumeric characters. For example: ’Monday’, ’Tuesday’, ’+’, ’*’,

’an atom with spaces’. You can even quote atoms that don’t need to be

quoted, so ’a’ means exactly the same as a.

The value of an atom is just the atom. So if you give a command that is

just an atom, the Erlang shell will print the value of that atom:

1> hello.
hello

It may seem slightly strange talking about the value of an atom or the

value of an integer. But because Erlang is a functional programming

language, every expression must have a value. This includes integers

and atoms that are just extremely simple expressions.

7. You might find that a period (.) can also be used in atoms—this is an unsupported

extension to Erlang.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

TUPLES 37

2.9 Tuples

Suppose you want to group a fixed number of items into a single entity.

For this you’d use a tuple. You can create a tuple by enclosing the

values you want to represent in curly brackets and separating them

with commas. So, for example, if you want to represent someone’s name

and height, you might use {joe, 1.82}. This is a tuple containing an atom

and a floating-point number.

Tuples are similar to structs in C, with the difference that they are

anonymous. In C a variable P of type point might be declared as follows:

struct point {

int x;

int y;
} P;

You’d access the fields in a C struct using the dot operator. So to set

the x and y values in Point, you might say this:

P.x = 10; P.y = 45;

Erlang has no type declarations, so to create a “point,” we might just

write this:

P = {10, 45}

This creates a tuple and binds it to the variable P. Unlike C, the fields

of a tuple have no names. Since the tuple itself just contains a couple

of integers, we have to remember what it’s being used for. To make it

easier to remember what a tuple is being used for, it’s common to use

an atom as the first element of the tuple, which describes what the

tuple represents. So we’d write {point, 10, 45} instead of {10, 45}, which

makes the program a lot more understandable.8

Tuples can be nested. Suppose we want to represent some facts about

a person—their name, height, foot size, and eye color. We could do this

as follows:

1> Person = {person,
{name, joe},
{height, 1.82},
{footsize, 42},
{eyecolour, brown}}.

8. This way of tagging a tuple is not a language requirement but is a recommended style
of programming.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

TUPLES 38

Note how we used atoms both to identify the field and (in the case of

name and eyecolour) to give the field a value.

Creating Tuples

Tuples are created automatically when we declare them and are de-

stroyed when they can no longer be used. Erlang uses a garbage col-

lector to reclaim all unused memory, so we don’t have to worry about

memory allocation.

If you use a variable in building a new tuple, then the new tuple will

share the value of the data structure referenced by the variable. Here’s

an example:

2> F = {firstName, joe}.
{firstName,joe}

3> L = {lastName, armstrong}.
{lastName,armstrong}
4> P = {person, F, L}.
{person,{firstName,joe},{lastName,armstrong}}

If you try to create a data structure with an undefined variable, then

you’ll get an error. So in the next line, if we try to use the variable Q

that is undefined, we’ll get an error:

5> {true, Q, 23, Costs}.

** 1: variable 'Q' is unbound **

This just means that the variable Q is undefined.

Extracting Values from Tuples

Earlier, we said that =, which looks like an assignment statement,

was not actually an assignment statement but was really a pattern

matching operator. You might wonder why we were being so pedantic.

Well, it turns out that pattern matching is fundamental to Erlang and

that it’s used for lots of different tasks. It’s used for extracting values

from data structures, and it’s also used for flow of control within func-

tions and for selecting which messages are to be processed in a parallel

program when you send messages to a process.

If we want to extract some values from a tuple, we use the pattern

matching operator =.

Let’s go back to our tuple that represents a point:

1> Point = {point, 10, 45}.
{point, 10, 45}.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

TUPLES 39

Supposing we want to extract the fields of Point into the two variables X

and Y, we do this as follows:

2> {point, X, Y} = Point.
{point,10,45}
3> X.
10

4> Y.
45

In command 2, X is bound to 10 and Y to 45. The value of the expression

Lhs = Rhs is defined to be Rhs, so the shell prints {point,10,45}.

As you can see, the tuples on both sides of the equal sign must have

the same number of elements, and the corresponding elements on both

sides must bind to the same value.

Now suppose you had entered something like this:

5> {point, C, C} = Point.
=ERROR REPORT==== 28-Oct-2006::17:17:00 ===
Error in process <0.32.0> with exit value:

{{badmatch,{point,10,45}},[{erl_eval,expr,3}]}

What happened? The pattern {point, C, C} does not match {point, 10, 45},

since C cannot be simultaneously 10 and 45. Therefore, the pattern

matching fails,9 and the system prints an error message.

If you have a complex tuple, then you can extract values from the tuple

by writing a pattern that is the same shape (structure) as the tuple and

that contains unbound variables at the places in the pattern where you

want to extract values.10

To illustrate this, we’ll first define a variable Person that contains a com-

plex data structure:

1> Person={person,{name,{first,joe},{last,armstrong}},{footsize,42}}.
{person,{name,{first,joe},{last,armstrong}},{footsize,42}}

Now we’ll write a pattern to extract the first name of the person:

2> {_,{_,{_,Who},_},_} = Person.
{person,{name,{first,joe},{last,armstrong}},{footsize,42}}

9. For readers familiar with Prolog: Erlang considers nonmatching a failure and does
not backtrack.
10. This method of extracting variables using pattern matching is called unification and
is used in many functional and logic programming languages.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

LISTS 40

And finally we’ll print out the value of Who:

3> Who.
joe

Note that in the previous example we wrote _ as a placeholder for vari-

ables that we’re not interested in. The symbol _ is called an anonymous

variable. Unlike regular variables, several occurrences of _ in the same

pattern don’t have to bind to the same value.

2.10 Lists

We use lists to store variable numbers of things: things you want to

buy at the store, the names of the planets, the results returned by your

prime factors function, and so on.

We create a list by enclosing the list elements in square brackets and

separating them with commas. Here’s how we could create a shopping

list:

1> ThingsToBuy = [{apples,10},{pears,6},{milk,3}].
[{apples,10},{pears,6},{milk,3}]

The individual elements of a list can be of any type, so, for example, we

could write the following:

2> [1+7,hello,2-2,{cost, apple, 30-20},3].
[8,hello,0,{cost,apple,10},3]

Terminology

We call the first element of a list the head of the list. If you imagine

removing the head from the list, what’s left is called the tail of the list.

For example, if we have a list [1,2,3,4,5], then the head of the list is the

integer 1, and the tail is the list [2,3,4,5]. Note that the head of a list can

be anything, but the tail of a list is usually also a list.

Accessing the head of a list is a very efficient operation, so virtually

all list-processing functions start by extracting the head of a list, doing

something to the head of the list, and then processing the tail of the

list.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

LISTS 41

Defining Lists

If T is a list, then [H|T] is also a list,11 with head H and tail T. The vertical

bar | separates the head of a list from its tail. [] is the empty list.

Whenever we construct a list using a [...|T] constructor, we should make

sure that T is a list. If it is, then the new list will be “properly formed.” If

T is not a list, then the new list is said to be an “improper list.” Most of

the library functions assume that lists are properly formed and won’t

work for improper lists.

We can add more than one element to the beginning of T by writing

[E1,E2,..,En|T]. For example:

3> ThingsToBuy1 = [{oranges,4},{newspaper,1}|ThingsToBuy].
[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

Extracting Elements from a List

As with everything else, we can extract elements from a list with a

pattern matching operation. If we have the nonempty list L, then the

expression [X|Y] = L, where X and Y are unbound variables, will extract

the head of the list into X and the tail of the list into Y.

So, we’re in the shop, and we have our shopping list ThingsToBuy1—the

first thing we do is unpack the list into its head and tail:

4> [Buy1|ThingsToBuy2] = ThingsToBuy1.
[{oranges,4},{newspaper,1},{apples,10},{pears,6},{milk,3}]

This succeeds with bindings

Buy1 !→ {oranges,4}

and

ThingsToBuy2 !→ [{newspaper,1}, {apples,10}, {pears,6}, {milk,3}].

We go and buy the oranges, and then we could extract the next couple

of items:

5> [Buy2,Buy3|ThingsToBuy3] = ThingsToBuy2.
{newspaper,1},{apples,10},{pears,6},{milk,3}]

This succeeds with Buy2 !→ {newspaper,1}, Buy3 !→ {apples,10}, and ThingsTo-

Buy3 !→ [{pears,6},{milk,3}].

11. Note for LISP programmers: [H|T] is a CONS cell with CAR H and CDR T. In a pattern,

this syntax unpacks the CAR and CDR. In an expression, it constructs a CONS cell.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

STRINGS 42

2.11 Strings

Strictly speaking, there are no strings in Erlang. Strings are really just

lists of integers. Strings are enclosed in double quotation marks ("), so,

for example, we can write this:

1> Name = "Hello".
"Hello"

Note: In some programming languages, strings can be quoted with

either single or double quotes. In Erlang, you must use double quotes.

"Hello" is just shorthand for the list of integers that represent the indi-

vidual characters in that string.

When the shell prints the value of a list it prints the list as a string, but

only if all the integers in the list represent printable characters:

2> [1,2,3].
[1,2,3]

3> [83,117,114,112,114,105,115,101].
"Surprise"
4> [1,83,117,114,112,114,105,115,101].
[1,83,117,114,112,114,105,115,101].

In expression 2 the list [1,2,3] is printed without any conversion. This is

because 1, 2, and 3 are not printable characters.

In expression 3 all the items in the list are printable characters, so the

list is printed as a string.

Expression 4 is just like expression 3, except that the list starts with a

1, which is not a printable character. Because of this, the list is printed

without conversion.

We don’t need to know which integer represents a particular character.

We can use the “dollar syntax” for this purpose. So, for example, $a is

actually the integer that represents the character a, and so on.

5> I = $s.
115

6> [I-32,$u,$r,$p,$r,$i,$s,$e].
"Surprise"

Character Sets Used in Strings

The characters in a string represent Latin-1 (ISO-8859-1) character

codes. For example, the string containing the Swedish name Håkan will

be encoded as [72,229,107,97,110].

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

PATTERN MATCHING AGAIN 43

Note: If you enter [72,229,107,97,110] as a shell expression, you might not

get what you expect:

1> [72,229,107,97,110].
"H\345kan"

What has happened to “Håkan”—where did he go? This actually has

nothing to do with Erlang but with the locale and character code set-

tings of your terminal.

As far as Erlang is concerned, a string is a just a list of integers in

some encoding. If they happen to be printable Latin-1 codes, then they

should be displayed correctly (if your terminal settings are correct).

2.12 Pattern Matching Again

To round off this chapter, we’ll go back to pattern matching one more

time.

The following table has some examples of patterns and terms.12 The

third column of the table, marked Result, shows whether the pattern

matched the term and, if so, the variable bindings that were created.

Look through these examples, and make sure you really understand

them:

Pattern Term Result

{X,abc} {123,abc} Succeeds X !→ 123

{X,Y,Z} {222,def,"cat"} Succeeds X !→ 222, Y !→ def,

Z !→ "cat"

{X,Y} {333,ghi,"cat"} Fails—the tuples have

different shapes

X true Succeeds X !→ true

{X,Y,X} {{abc,12},42,{abc,12}} Succeeds X !→ {abc,12}, Y !→ 42

{X,Y,X} {{abc,12},42,true} Fails—X cannot be both

{abc,12} and true

[H|T] [1,2,3,4,5] Succeeds H !→ 1, T !→ [2,3,4,5]

[H|T] "cat" Succeeds H !→ 99, T !→ "at"

[A,B,C|T] [a,b,c,d,e,f] Succeeds A !→ a, B !→ b,

C !→ c, T !→ [d,e,f]

If you’re unsure about any of these, then try entering a Pattern = Term

expression into the shell to see what happens.

12. A term is just an Erlang data structure.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

PATTERN MATCHING AGAIN 44

For example:

1> {X, abc} = {123, abc}.
{123,abc}.

2> X.
123
3> f().
ok

4> {X,Y,Z} = {222,def,"cat"}.
{222,def,"cat"}.

5> X.
222
6> Y.
def

...

Note: The command f() tells the shell to forget any bindings it has. After

this command, all variables become unbound, so the X in line 4 has

nothing to do with the X in lines 1 and 2.

Now that we’re comfortable with the basic data types and with the

ideas of single assignment and pattern matching, so we can step up

the tempo and see how to define functions and modules. Let’s see how

in the next chapter.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jaerlang

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Programming Erlang
http://pragmaticprogrammer.com/titles/jaerlang

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community
http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/jaerlang.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/jaerlang
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
http://pragmaticprogrammer.com/titles/jaerlang
http://www.pragmaticprogrammer.com/catalog

