
Extracted from:

Programming Elm
Build Safe and Maintainable Front-End Applications

This PDF file contains pages extracted from Programming Elm, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Elm
Build Safe and Maintainable Front-End Applications

Jeremy Fairbank

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-285-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—December 20, 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Travel through Time
Have you ever wanted to travel through time? Well, we’re not exactly hopping
in a DeLorean to go ride some hoverboards. However, we will bend the rules
of time in Elm applications. I can hardly tell you the number of bugs I’ve
received that I can’t reproduce according to the steps in a bug report. It’s the
classic “works on my machine” scenario.

Elm does better.

Recall that state changes one message at a time in Elm applications as the
update function returns new state. Therefore, you could capture the lifetime
of an Elm application by saving the state returned from update. You’re safe to
hold on to it because it’s immutable.

If the QA (quality assurance) team recorded their test runs like this, then you
could replay the state changes in development to exactly reproduce bugs.
This isn’t a fantasy; it’s a reality with the Elm time travel debugger.

The time travel debugger records and replays state changes in Elm applica-
tions. You can effectively rerun the application as another user did. In this
section, we will use the time travel debugger to debug our Picshare application
from previous chapters. You will learn how to step through state changes to
find the source of bugs in Elm applications.

Replay with the Time Travel Debugger
After developing the Picshare application, you’ve handed it off to QA to test.
The QA team finds a few issues and sends back this bug report.

• New comments appear to add in the wrong order.
• After adding comments, I was unable to unlike a photo.
• New photos from the photo stream appear at the bottom of the feed.

This bug report lacks details, which makes it harder to find the source of the
bugs in the code. Luckily, the QA team exported a history file from the time
travel debugger and attached it to the bug report.

We could attempt to recreate the bugs and manually search code. Instead,
let’s import the history file into the time travel debugger. Then, we can walk
through the same steps as the QA team. The time travel debugger will help
us quickly identify where to locate the buggy code.

Look for the buggy version of Picshare inside the code/develop-debug-deploy
directory from this book’s code downloads. Locate the files Picshare.elm, pic-

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

share.html, picshare.css, and history.txt and copy them into the debugging directory
from the previous section.

You will need the Http and WebSocket modules. Install them in the debugging
directory like so.

elm package install -y elm-lang/http
elm package install -y elm-lang/websocket

Next, compile Picshare.elm into a JavaScript file, but this time include the --debug
option. The --debug option will enable the Elm time travel debugger in the
compiled application.

elm make Picshare.elm --debug --output picshare.js

Open picshare.html in your browser. The application should load as normal, but
you should now see the time travel debugger in the bottom right corner of
your browser window.

The number next to “Explore History” should begin incrementing too. That
number indicates how many messages the update function has processed.
Click “Explore History” to make the time travel debugger reveal more details.
You should see a popup that resembles the screenshot below.

On the left side of the popup, you will see some of the application’s Msg values
in the following order.

LoadFeed Ok ...
LoadStreamPhoto Ok ...
LoadStreamPhoto Ok ...
LoadStreamPhoto Ok ...

These are the exact Msg values the update function has handled in order from
top to bottom. This is the history of your application.

Elm only changes state by calling the update function with Msg values. You
should see that the application has loaded the initial feed with LoadFeed and

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

received three new photos from the WebSocket stream with LoadStreamPhoto
similar to the listing above.

Not only does the time travel debugger display the current history of dis-
patched messages, but it also shows the application’s Model state. Look at the
right side of the popup. You should see an Elm record with populated feed
and streamQueue fields.

Try replaying history by clicking on the LoadFeed Msg on the left. The state on
the right should change. The streamQueue list should be empty, but the feed list
should persist. If you look at the application UI, you should also see the
notification banner for the photo stream disappear.

You’ve essentially rewound your application like a cassette tape. I hope that
doesn’t make me sound old. The application is now back at the start when
Elm processed the LoadFeed message from the fetchFeed command in init.

Because state is immutable, Elm easily accomplishes time travel by keeping
a reference to every new model returned from update. Then, Elm “replays”
history by swapping the current state with historical state and calling the
view function with the historical state.

Click on the next LoadStreamPhoto message on the left side. You should see one
photo appear in the streamQueue field on the right and the notification banner
reappear in the application UI.

Track Down the Bugs
Now that you’re familiar with the time travel debugger, let’s actually import
the history file from QA and track down the bugs they found. At the bottom
of the left side of the debugger, you should see the words “Import / Export”.
Click on “Import”, and your operating system’s file dialog should appear.
Navigate to your debugging directory and open the history.txt file.

The debugger popup window might disappear behind your browser window,
so bring it back to the front. The history should contain a lot of messages
now. Let’s work through this new history to fix the bugs.

The first bug stated that new comments appear in the wrong order. You should
see messages that refer to comments early in the history, so let’s walk through
messages from the beginning. Click on the first LoadFeed message to reset the
application. Then, press your keyboard’s ↓ key to move through history one
message at a time.

As you progress, the first photo should become liked in the UI thanks to the
ToggleLike message. After that, you’ll see Elm “retype” the comment “test” into

• Click HERE to purchase this book now. discuss

Travel through Time • 5

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

the first photo’s comments. Once you step through the first SaveComment
message, you should immediately see the problem. The comment appears
above the original comment “Cowabunga, dude!” Recall in our original appli-
cation that comments appear underneath the previous comment to preserve
chronological order. If you walk through the next series of UpdateComment and
SaveComment messages from QA, you’ll see the QA tester confirm the buggy
behavior by adding another comment above the previous one.

Let’s digest what the debugger is telling us. The bug seems to occur when the
update function processes the SaveComment message. Open up Picshare.elm in your
editor and go to the SaveComment branch inside the update function.

develop-debug-deploy/Picshare.elm
SaveComment id ->

({ model
| feed = updateFeed saveNewComment id model.feed

}
, Cmd.none
)

This branch calls out to the helper functions updateFeed and saveNewComment.
The saveNewComment function sounds like the culprit, so jump to its definition.
Look at the bottom of the function definition. You’ll see that it prepends
comments to the photo with the :: operator. That’s the source of our bug.

{ photo
| comments = comment :: photo.comments➤

, newComment = ""
}

Fix the code by appending the comment with the ++ operator. Make sure you
place comment inside a list and flip the order of comment and photo.comments.

photo.comments ++ [comment]

Not only can you find bugs with the time travel debugger, but you can also
confirm bug fixes. Let’s replay QA’s history with the bug fix in place. Recompile
your application with the --debug option and refresh your browser. Import the
history.txt and walk through the history through the second SaveComment message.
You should see the new comments appear in the correct order underneath
the initial comment. That was an easy fix with the time travel debugger.

Let’s fix the next bug. Continue walking through the history. You should see
QA’s attempt to unlike the first photo with two ToggleLike messages. Track
down ToggleLike in the update function. The update function calls the toggleLike
helper function, so go to its definition. You should immediately see the bug.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jfelm/code/develop-debug-deploy/Picshare.elm
http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

It only sets a photo’s liked field to True. This was likely left over during some
local testing of the love button.

toggleLike photo =
{ photo | liked = True }

Fix the code by toggling the current photo.liked field with the not function.

{ photo | liked = not photo.liked }

Recompile the application and import the history file. Walk through the his-
tory, and you should now see the photo become liked and unliked correctly
with each ToggleLike message.

To fix the final bug, walk through the history to the end. When you reach the
FlushStreamQueue message, the stream photos should appear at the end of the
feed instead of the beginning. Go to the FlushStreamQueue branch of the update
function. This issue is similar to the comments bug. The update function con-
catenates the model.feed and model.streamQueue values in the wrong order.

FlushStreamQueue ->
({ model

| feed = Maybe.map (\feed -> feed ++ model.streamQueue) model.feed➤

, streamQueue = []
}

, Cmd.none
)

To fix the bug, flip the order of feed and model.streamQueue inside the anonymous
function passed into Maybe.map.

Maybe.map (\feed -> model.streamQueue ++ feed) model.feed

Alternatively, use partial application with the function version of ++ like we
did in code on page ?. Partial application will make model.streamQueue the left
operand during concatenation, meaning the stream photos will appear at the
beginning of the feed.

Maybe.map ((++) model.streamQueue) model.feed

Compile one last time with the --debug option and refresh your browser. Import
the history file and replay the history of changes. Comments should appear
in the right order, photos should become liked and unliked correctly, and the
photo stream should load at the top of the feed.

The time travel debugger is an invaluable tool for finding bugs and verifying
that bug fixes work. OK, I’ll admit that I deliberately introduced these bugs
so you could easily find them with the time travel debugger. Sometimes, you
may not discover bugs so easily. For example, assume the feed photos only

• Click HERE to purchase this book now. discuss

Travel through Time • 7

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

ever had one comment added in the history file. Then, the time travel
debugger wouldn’t have revealed that the application adds additional com-
ments in the wrong order.

Now that you’ve fixed Picshare, you can confidently ship a new bug-free ver-
sion. In fact, you will do that in the next section. You will also learn how to
speed up your development cycle in the process.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jfelm
http://forums.pragprog.com/forums/jfelm

