Extracted from:

Designing Elixir Systems with OTP
Write Highly Scalable, Self-Healing Software with Layers

This PDF file contains pages extracted from Designing Elixir Systems with OTP,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Designing Elixir
Systems with OTP

Write Highly Scalable,
Self-Healing Software with Layers

N
L4

\»”
.y,
o/
N
“
James Edward Gray, II

Bruce A. Tate
edited by Jacquelyn Carter






Designing Elixir Systems with OTP
Write Highly Scalable, Self-Healing Software with Layers

James Edward Gray, Il
Bruce A. Tate

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwytin
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-661-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2019


https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Build Your Project in Layers

Don’t let anyone tell you differently. Building great software is hard, and
Elixir's not a silver bullet. Though it makes dealing with processes easier,
concurrent code will never be easy. If your checklist includes intimidating
scalability requirements, performance consistency under load, or highly
interactive experiences or the like, programming gets harder still. In this book,
we won't shy away from these demands.

If you're like us, you found a valuable companion in Elixir, with some character-
istics you believe can help you with some of these challenges, even if you don’t
fully understand it. Perhaps Elixir is your first functional language, as it is for
many of us. You may need some guidance for how to choose your data structures
or organize your functions. Or, you might have found several ways to deal with
concurrency and need some advice on which approach to use.

We can tell you definitively that you're not alone and we're here to help. We
won't offer panaceas, or full solutions to toy problems that have general advice
about design. We will offer some mental models for how to deal with complex-
ity piece by piece.

With most any new endeavor, progress comes at a price. Our first payment
is a willingness to change.

We Must Reimagine Design Choices

We believe good software design is about building layers, so perhaps the most
important aspect of this book is helping good programmers understand where
layers should go and how they work. Some of the techniques that we used
when the internet was young are not the ones we’ll be using into the future,
but take heart. This author team doesn’t have all of the answers, but both of
us have a strong corpus to draw from.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

2

Some of our inspiration comes from the past. Throughout this book, we're
going to distill much of the conventional wisdom from functional programmers
and we’re not shy about crossing language boundaries to learn. We're going
to draw on the expertise of Elixir programmers, including many of the people
who shaped the language as it was formed.

We'll also draw inspiration from Erlang, Clojure, and Elm for algorithms and
techniques to solve problems similar to the ones we're facing as we determine
what the right set of layers should be. We'll rely heavily on Erlang, especially
the OTP framework that helps manage concurrency state and lifecycle.

This book is about design, and because Elixir heavily uses OTP, we must
address how to construct layers around an OTP program. Let’s define that
term quickly with a brief generality. OTP is a library that uses processes and
layers to make it easy to build concurrent, self-healing software. Throughout
the book, we’ll deepen that understanding.

In this brief journey together, we will show you how to write effective Elixir
by showing you how to use layers to hide complex features until you need to
think about them. We'll extend our layers to take advantage of OTP, offering
some intuition for how it works and some guidance for how to incorporate it
into your layered designs.

If you find some tools to improve that skill, even if you don’t use every tech-
nique in this book, you’ll be much better positioned to create good Elixir code
that takes full advantage of the wide variety of libraries and frameworks in
the Elixir ecosystem.

The first question you may be asking is which layers you should build. In the
sections that follow, we’ll offer some guidance to help you choose.

Choose Your Layers

The layers we will present to write a typical project are not set in stone. Instead,
they are a rough scaffold, a framework for thinking about solutions to common
design problems. We're not slaves to these systems but they help to free us from
dealing with mechanical details so that we can focus on solving problems.

We recommend the software layers: data structures, a functional core, tests,
boundaries, lifecycle, and workers. Not every project will have all of these
layers, but some will. It’s your job as the author of a codebase to decide which
layers are worth the price and which ones to eliminate. It’s a lot to remember,
so use this sentence as a mnemonic:

Do fun things with big, loud worker-bees.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

Choose Your Layers ¢ 3

The first letter of the essential words in the sentence match the first letters
in our layers: data, functional core, tests, boundaries, lifecycles, workers.
You can see how they all fit together in the following figure:

Worker-bees: Workers
(pools and dependencies)

Big: Boundaries Loud: Lifecycle
(processes) (supervisors)

Fun: Functional Core Things: Tests
(logic)

Do: Data
(models the domain)

Do fun things with big, loud worker-bees.

In this chapter, we will explore each layer in detail. We’ll call each unit of
software you build that honors these concepts a component.

To help you understand what each of these layers do, we're going to build
two components in this book. The first will be a trivial counter. We know you
understand how counters work, but building this component will help you
internalize the design framework we've established, and what each of the
layers means.

The next component, a project called Mastery, will be much more complex,
and will comprise the whole rest of the book. It will be a quiz, but not a typical
one. This quiz will tailor itself as the user answers questions. Its purpose will
be to help you learn to use that design framework in context to build a project
with real complexity.

Let’s get started with that first component, the counter. Rather, let’s not get
started. It always pays to think first.
Think Before You Start

This isn’t as much a layer in our framework as a philosophy for coding. Most
programmers don’t think enough before opening the editor. It’s healthy to
start every problem with whatever tools help you think. It may just mean
propping your feet up on a desk; it may be spending a little bit of time with

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

o4

a whiteboard or even a pen and paper. Testing zealots like us believe bugs
are less expensive to fix before they reach the customer. We’ll take this idea
further. Bugs are cheapest to catch before you write your first line of code.

At this stage, your first goal is to understand how to break down the major
components in your system. Within the Elixir community, you won't find any
single answer to how fine you should break down your components.

Here’s the thing. If you think of OTP as a way to encapsulate data, or even
objects, you're going to get it wrong. Elixir processes work best when they
span a few modules that belong together. Breaking your processes up too
finely invites integrity problems the same way that global variables do.

We believe that whenever possible, concepts that belong together should be
packaged together as part of the same component. For example, we’'d rather
wrap a process around a chess game as a standalone component than have
each piece in its own process, so we can enforce the integrity of the board at
the game level.

Our counter is a standalone component that we’ll use to count things in isola-
tion. The data is an integer, does not need to persist through a failure or restart.
The counter has a two function API to increment the counter and get the value.
We only have a single component so we don’t have to divide responsibilities.

We’'ll make the critical assumption that persisting state is unimportant and
we don’t have to worry about guaranteed delivery of messages, even across
restarts, but our counter should track a value transiently, and that value
should be available to other processes. Such state is ephemeral. Freedom
from persistence allows us much more flexibility than we’d otherwise experi-
ence. Elixir is extremely good at managing ephemeral state such as counters
and caches. In later chapters, you'll see a good way to add persistence to a
component as we deal with the second component.

Create a Mix Project

With those details firmly in place, we can create our software. You might have
noticed that until now, we've steadfastly avoided the word “application.”
There’s a reason for that decision. The term is overloaded. To any given Elixir
developer, an application might be the thing you:

¢ Build with OTP

¢ Create when you type mix new

¢ Create when you type mix phx.new
e Deploy

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

Begin with the Right Datatypes ® 5

And each of these, in some context, is right. We're going to refrain from using
“application” in the context of the thing we're creating with mix new. That thing
is a project. Let’s create one now.

Create a new project from your OS console. Type mix new counter and change
into the counter directory. We are finally ready to build our first layer.

Begin with the Right Datatypes

The “data” layer has the simple data structures your functions will use. Just
as an artist needs to learn to use the colors on their palette, Elixir developers
need to learn the best ways to mix the data structures. Every programmer
making a transition to functional programming needs to understand its impact
on data design.

In this book, we won'’t tell you what maps or lists are, but we will provide an
overview of what kinds of datatypes to choose for selected tasks and how you
can weave them together into a good functional data strategy. We'll give you
some dos and don’ts for the most common datatypes, and provide you some
tips for choosing good ways to express the concepts in your program as data.

Our counter’s datatype couldn’t be simpler. It's an integer. Normally, you'll
spend much more time thinking about your data than we do here. You'll
likely begin to code up the major entities in your system. We don’t need to
do that for our counter because Elixir already has the integer, and it already
supports the kinds of things we’ll do to it.

As this book grows, we'll spend a good amount of time working through data
structures. Our focus will be primarily in three areas:

e We'll look at what’s idiomatic and efficient in Elixir.

e We'll review how our structures will influence the designs of our functions.

e We'll consider some of the trade-offs around cohesion, meaning how
closely we group related bits of data.

When the data structure is right, the functions holding the algorithms that
do things can seem to write themselves. Get them wrong and it doesn’t really
matter how good a programmer you are; your functions will feel clumsy and
awkward.

Since we don’t have any custom data structures, we can move on. Let’s write
some functions.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

°6

Build Your Functional Core

Now we’ll finally start coding. Our functional core is what some programmers
call the business logic. This inner layer does not care about any of the
machinery related to processes; it does not try to preserve state; and it has
no side effects (or, at least, the bare minimum that we must deal with). It is
made up of functions.

Our goal is to deal with complexity in isolation. Make no mistake, processes
and side effects add complexity. Building our core allows us to isolate the
inherent complexity of our domain from the complexity of the machinery we
need to manage processes, handle side effects, and the like.

In a chess game, this logic would have functions that take a board, move an
individual piece, and return an updated board. It may also have a function
to take a board with all of its pieces and calculate the relative strength of a
position. In a calculator, the core would handle all of the numeric operators
for the calculator.

Let’s look at a specific example, our counter. Our business logic will count
numbers. This code should be as side effect free as we can make it. It should
observe two rules:

¢ It must not have side effects, meaning it should not alter the state of its
environment in any way.

¢ A function invoked with the same inputs will always return the same
outputs.

Our counter’s business logic increments a value. Let’s write that inner func-
tional core now. Crack open lib/counter/core.ex and make it look like this:

GettingStarted/counter/lib/counter/core.ex
defmodule Counter.Core do
def inc(value) do
value + 1
end
end

Though you can’t yet behold the power of the fully operational counter, the
business logic makes it easy to track exactly what is happening. Our public
API has two functions: one to advance the counter and one to return state.
The process we’ll use to manage state doesn’t belong here so we need only
the inc function. Let’s take it for a quick spin. Open it with iex -S mix, like this:

iex(1l)> Counter.Core.inc(1)
2

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/jgotp/code/GettingStarted/counter/lib/counter/core.ex
http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

Build Your Functional Core ¢ 7

Before we dive into code, let’s say a brief word about documentation. We’'ll mainly
strip out the module docs and doc tests when we initially work on a project because
we want to keep a tight feedback loop. A book is a poor place for comments and
documentation fixtures in code because prose serves that role. In practice, when code
reaches a fairly mature point, we’ll add typespecs and module docs, and possibly
even doc tests if they make sense. We also made the tough decision to remove type-
specs because books are about trade-offs between space and concept. We believe the
story arc flows better without them.

All of this is to say documentation and typespecs are important, but do what works
for you. If you want to read more, check out Adopting Elixi

That’s all our functional core needs, just the functions that manipulate our
data structure. If you want to see this code in the context of a program, spin
up the following program:

defmodule Clock do
def start(f) do
run(f, 0)
end

def run(your hearts desire, count) do
your hearts desire.(count)
new count = Counter.Core.inc(count)
:timer.sleep(1000)
run(your _hearts desire, new count)
end
end

If you want to run this much, open up a new IEx shell because we’ll have to
kill the following one after running the timer since it loops forever. Then pick
what you want to do every cycle by passing whichever function your heart
desires into run, like this:

iex> Clock.start(fn(tick) -> I0.puts "The clock is ticking with #{tick}" end)
The clock is ticking with 1

The clock is ticking with 2
The clock is ticking with 3

And you’'ll have to kill that session with hot fire because it loops forever. Still,
you can see the way we build our inner layer into a functional core.

We've addressed the data and functional core in “Do fun things”; we will come
back to tests. For now, we understand that our counter must be more than
a simple library. Counters exist to count and that means saving state. It's

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

°8

time to address the process machinery, the “big, loud worker-bees” part of
our mnemonic. We'll start with a boundary layer.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

