
Extracted from:

Deploying with JRuby
Deliver Scalable Web Apps Using the JVM

This PDF file contains pages extracted from Deploying with JRuby, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

1.1 What Makes JRuby So Great?

A production JRuby environment has fewer moving parts than traditional
Ruby environments. This is possible because of the JVM’s support for native
operating system threads. Instead of managing dozens of processes, JRuby
can use multiple threads of execution to do work in parallel. MRI has threads,
but only one thread can execute Ruby code at a time. This has led to some
complex workarounds to achieve concurrency.

Deployment with MRI usually requires a type of architecture that handles
HTTP requests by placing either Apache2 or a similar web server in front of a
pool of application instances that run in separate processes. An example of
this using Mongrel is illustrated in Figure 2, Traditional MRI web application
architecture, on page 2. There are many problems with this kind of architec-
ture, and those problems have been realized by Twitter, GitHub, and countless
others. They include the following:

Stuck processes
Sometimes the processes will get into a stuck state and need to be killed
by an external tool like god or monit.

Slow restarts
There is a lot of overhead in starting a new process. Several instances
may end up fighting each other for resources if they are restarted at the
same time.

Memory growth
Each of the processes keeps its own copy of an application, along with
Rails and any supporting gems, in memory. Each new instance means
we’ll also need more memory for the server.

Several frameworks, such as Unicorn, Passenger, and Thin, have been created
that try to improve upon this model. But they all suffer from the same
underlying constraint. MRI cannot handle multiple requests in the same
runtime concurrently. If you want to handle ten requests at the same time,
then you need to have ten instances of your application running. No matter
how you do it, deploying with MRI means managing lots of processes.

JRuby allows us to use a very similar model but with only one JVM process.
Inside this JVM process is a single application instance that handles all of
our website’s traffic. This works by allowing the platform to create many
threads that run against the same application instance in parallel. We can

2. http://httpd.apache.org/

• Click HERE to purchase this book now. discuss

http://httpd.apache.org/
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

MRI

Mongrel

Apache/Nginx

HTTP
Request

MRI

Mongrel

Figure 2— Traditional MRI web application architecture

create far more JVM threads than we could MRI processes because they are
much lighter weight. This model is illustrated in Figure 3, Architecture of a
JRuby web application, on page 3, and we can use it to serve many more
concurrent requests than an MRI-based system.

We’ve included Apache in the architecture, but its role on a single instance
is greatly reduced. We’ll use it to serve up static content and load balance a
distributed cluster, but it won’t need to distribute requests across multiple
processes on a single machine.

In the coming chapters, we’ll build an architecture like the one we’ve just
described with each of the technologies we use. We’ll start with Warbler, which
will get us up and running quickly. Let’s begin by using Warbler to package
a simple Rack application.

2 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

JVM

Twitalytics

Thread

Apache/Nginx

HTTP
Request

Figure 3—Architecture of a JRuby web application

• Click HERE to purchase this book now. discuss

What Makes JRuby So Great? • 3

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

