
Extracted from:

Deploying with JRuby
Deliver Scalable Web Apps Using the JVM

This PDF file contains pages extracted from Deploying with JRuby, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Preface
Your website has just crashed, and you’re losing money. The application is
built on Rails, runs on MRI, and is served up with Mongrel and Apache.
Having this kind of infrastructure means that you’re managing more processes
than you can count on two hands.

The background jobs are run with Resque,1 the scheduled jobs are run with
cron, and the long-running jobs use Ruby daemons,2 which are monitored by
monit.3 It’s going to take some time to figure out which component is the
culprit because you have no centralized management interface. Standing up
a new server will take almost as long because the infrastructure is so complex.
But the website has to get back online if you are going to stay in business.

The problem I’ve just described is all too common. It has happened to everyone
from small start-ups to large companies that use Rails to serve millions of
requests. Their infrastructure is complex, and the myriad components are
difficult to manage because they are heterogeneous and decentralized in
nature. Even worse, Rubyists have become comfortable with this way of doing
things, and many think it is the only way of doing things. But that is not the
case.

The recent growth and increased adoption of the Java Virtual Machine (JVM)
as a platform for Ruby applications has opened many new doors. Deployment
strategies that were not possible with MRI Ruby are now an option because
of the JVM’s built-in management tools and support for native operating
system threads. Ruby programmers can leverage these features by deploying
their applications on JRuby.

It’s common for Ruby programmers to think that JRuby deployment will look
identical to deployment with MRI Ruby (that is, running lots of JVM processes

1. https://github.com/defunkt/resque
2. http://daemons.rubyforge.org/
3. http://mmonit.com/monit/

• Click HERE to purchase this book now. discuss

https://github.com/defunkt/resque
http://daemons.rubyforge.org/
http://mmonit.com/monit/
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

behind a load balancer and putting any asynchronous background jobs in a
separate process). On the other hand, Java programmers tend to deploy
JRuby applications the same way they deploy Java applications. This often
requires lots of XML and custom build configurations, which negate many of
the benefits of a more dynamic language such as Ruby. But there are much
better options than both Ruby and Java programmers are used to.

In this book, we’ll explore the most popular and well-supported methods for
deploying JRuby. There is a surprising amount of flexibility in the processes
and platforms that can be used, which allows Ruby and Java programmers
to tailor their deployments to suit many different environments.

What’s in This Book?

Over the course of this book, we’re going to rescue the application that was
described at the beginning of the chapter. We’ll do this by porting it to JRuby
and deploying it in a way that will simplify its infrastructure and improve its
ability to scale.

The application’s name is Twitalytics, and it’s a powerful Twitter client. (As
you probably know, Twitter is a social networking website that’s used to post
short status updates, called tweets.) Twitalytics tracks public tweets about
an organization and performs analytic computations against data captured
in those tweets in order to discover trends and make predictions. But it can’t
handle its current load.

Twitalytics has several background jobs that are used to stream tweets into
the application, perform analytics, and clean up the database as it grows. In
addition, it receives a large volume of HTTP requests for traditional web traffic.
But doing this on MRI means running everything in separate processes, which
consumes more resources than our systems can handle.

We’ll begin rescuing Twitalytics in Chapter 1, Getting Started with JRuby, on
page ?. We’ll discuss what makes JRuby a better deployment platform and
why we want to use it for our application. Then we’ll port Twitalytics to JRuby
and package it into an archive file with the Warbler gem. But before we can
deploy it, we’ll need to create an environment where it can run.

In Chapter 2, Creating a Deployment Environment, on page ?, we’ll set up a
virtual production server that will simulate a real deployment target. We’ll
provision it with the essential components of any production JRuby environ-
ment, which means these steps will apply not only to Twitalytics but to any
JRuby deployment. You’ll also learn how to automate this process to make

vi • Preface

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

it more reliable. We’ll create a new server for each deployment strategy we
use in this book, and the automated scripts will save us from having to re-
create this environment each time.

Once we’ve completed the setup of our production server, we’ll be ready to
deploy. In Chapter 3, Deploying an Archive File, on page ?, we’ll write a script
that deploys the archive file we created earlier. You’ll learn how this process
differs from the more common practice of deploying a Ruby application as a
directory of loose files. The script we’ll write will be more portable than tools
like Capistrano. We’ll also deploy Twitalytics to the cloud with the CloudBees
platform.

The Warbler gem gives us a quick way to get started with JRuby. But it’s just
a stepping stone on our path to better performance. As the book progresses,
we’ll improve our deployment by running Twitalytics on some JRuby web
servers.

The next two chapters of the book will be dedicated to the lightweight Trinidad
web server. Trinidad lets us deploy applications much like we would with
MRI-based Rails applications using tools like Capistrano. But we’ll find that
JRuby allows us to reduce the complexity of this kind of deployment environ-
ment while increasing its reliability and portability. In Chapter 4, Creating a
Trinidad Application, on page ?, we’ll port not only the part of Twitalytics
that handles web requests but also its background jobs to Trinidad. Then
we’ll set up our virtual server and deploy our application in Chapter 5,
Deploying a Trinidad Application, on page ?. The resulting architecture will
be friendly and familiar to Rubyists.

But we still won’t be making the most of what the JVM has to offer. To do
that, we’ll need a new kind of container.

In Chapter 6, Creating a TorqueBox Application, on page ?, we’ll introduce
the concept of an application server. This kind of deployment is unique when
compared to traditional Ruby deployments because it provides a complete
environment to run any kind of program, not just a web application. We’ll
show how this eliminates the need for external processes and provides a
centralized management interface. In Chapter 7, Deploying a TorqueBox
Application, on page ?, we’ll push to a production server running TorqueBox.
But ultimately, we’ll deploy our application to a TorqueBox cluster in Chapter
8, Clustering a TorqueBox Application, on page ?. This will give us the most
advanced deployment environment available to any Ruby application.

An overview of each strategy covered in this book is listed in the following
table:

• Click HERE to purchase this book now. discuss

What’s in This Book? • vii

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

TorqueBoxTrinidadWarbler

JBoss ASApache TomcatWinstoneBuilt-in web server

Knob fileWAR fileWAR fileArchive file deployment

YesYesNoCapistrano deployment

YesYesNoBackground jobs

YesNoNoClustering support

Deciding on the right platform for each application is a function of these
attributes. But getting an application up and running on one of these platforms
is just part of the job. We also need to keep it running. To do that, we’ll use
some built-in JVM tools to inspect our new platform.

Chapter 9, Managing a JRuby Deployment, on page ? will present some tools
for monitoring, managing, and configuring a deployed JRuby application.
These tools are independent of any deployment strategy and can be used to
monitor the memory consumption, performance, and uptime of any Java
process. Finally, Chapter 10, Using a Continuous Integration Server, on page
? will introduce a tool for producing reliable and consistent deployments.

Twitalytics is a Rails application, and we’ll use this to our advantage as we
deploy it. But all of the server technologies we’ll use work equally well with
any Rack-compliant framework (such as Sinatra4 or Merb5). In fact, the steps
we’ll use to package and deploy Twitalytics would be identical for these other
frameworks. Warbler, Trinidad, and TorqueBox provide a few hooks that make
deploying a Rails application more concise in some cases (such as automati-
cally packaging bundled gems). But the workflow is the same.

When you encounter Rails-specific features in this book, be aware that this
is only for demonstration purposes and not because the frameworks are
pigeonholed to work with Rails. In fact, Rails works with these servers because
it is Rack-based.

Who Is This Book For?

This book is for programmers, system administrators, and DevOps6 profes-
sionals who want to use JRuby to power their applications but are not
familiar with how this new platform will change their infrastructure.

4. http://www.sinatrarb.com/
5. http://www.merbivore.com/
6. http://en.wikipedia.org/wiki/DevOps

viii • Preface

• Click HERE to purchase this book now. discuss

http://www.sinatrarb.com/
http://www.merbivore.com/
http://en.wikipedia.org/wiki/DevOps
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

It is not required that you have any experience with JRuby. This book is
written from the perspective of someone who is familiar with MRI-based Ruby
deployments but wants a modern deployment strategy for their applications.
Some of the concepts we’ll discuss may be more familiar to programmers with
Java backgrounds, but it is not required that you have any experience with
Java or its associated technologies.

The No-Java-Code Promise

You will not have to write any Java code as you work your way through this
book. That’s not what this book is about. It is about deploying Ruby applica-
tions on the JVM. The technologies and tools that you will be introduced to
in this book hide the XML and Java code from you. As the TorqueBox devel-
opers like to say, “[They] write Java so you don’t have to.”7

You may want to include some Java code in your application. Or you may
want to make calls to some Java libraries. That is entirely your choice. If you
want to write your programs exclusively in Ruby and deploy them on the Java
Virtual Machine—like so many of us do—then go ahead.

There are many reasons to deploy Ruby applications on the JVM, and using
Java libraries and APIs is just one of them. In this book, you’ll learn how to
get the most out of the JVM without writing any Java code.

Conventions

The examples in this book can be run on Linux, Mac, Windows, and many
other operating systems. But some small changes to the command-line
statements may be required for certain platforms.

We’ll be using notation from bash, the default shell on Mac OS X and many
Linux distributions, so the $ prompt will be used for all command-line
examples. Windows command prompts typically use something like C:\>
instead, so when you see a command like this:

$ bundle install

you’ll know not to type the dollar sign and to read it like this:

C:\> bundle install

The commands we’ll use are mostly compatible between Windows and bash
systems (such as cd and mkdir). In the cases where they are not compatible,

7. http://vimeo.com/27494052

• Click HERE to purchase this book now. discuss

The No-Java-Code Promise • ix

http://vimeo.com/27494052
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

the appropriate commands for both systems will be spelled out. One in par-
ticular is the rm command, which will look like this:

$ rm temp.txt
$ rm -rf tmp/

On Windows this should be translated to these two commands, respectively:

C:\> del temp.txt
C:\> rd /s /q tmp/

Another Unix notation that is used in this book is the ~ (tilde) to represent a
user’s home directory. When you see a command like this:

$ cd ~/code/twitalytics

you can translate it to Windows 7 as this command:

C:\> cd C:\Users\yourname\code\twitalytics

On earlier versions of Windows, the user’s home directory can be found in
the Documents and Settings directory. You can also use the %USERPROFILE% environ-
ment variable. Its value is the location of the current user’s profile directory.

Other than these minor notation changes, the examples in this book are
compatible with Windows by virtue of the Java Virtual Machine.

Preparing Your Environment

Four software packages are required to run the examples in the book. They
are listed here along with the version that is needed:

• Java Development Kit (JDK) 6 (aka 1.6)
• JRuby 1.6.7
• Git 1.7
• Bundler 1.0

Java 7 was released in July 2011 and is supported by JRuby 1.6.7, but this
newer version of the JVM is not readily available on all operating systems.
To ensure the consistency of the steps in this book, we will use Java 6.
However, you are encouraged to try Java 7 if your platform supports it.8

Java is supported in one form or another on a wide range of operating systems
including Linux, Mac, Windows, and more, but the installation process will
be different for each.

8. http://www.engineyard.com/blog/2011/getting-started-with-jruby-and-java-7/

x • Preface

• Click HERE to purchase this book now. discuss

http://www.engineyard.com/blog/2011/getting-started-with-jruby-and-java-7/
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

Installing Java

On Debian-based Linux platforms, such as Ubuntu, the JVM can be installed
with APT, like this:

$ sudo apt-get install openjdk-6-jdk

On Fedora, Oracle Linux, and Red Hat, the JVM can be install with the yum
command, like this:

$ su -c "yum install java-1.6.0-openjdk"

For Mac OS X systems, Apple provides a JDK version 6, and versions of Mac
OS X prior to 10.7 (Lion) ship with the JDK. If you are running Lion, you can
install the JDK by opening the Java Preferences application under the /Appli-
cations/Utilities/ directory. The first time this program is opened, we’ll see a dialog
like the one in Figure 1, Mac OS X prompt to install Java, on page xii. Follow
its instructions to install the Java runtime. If the dialog does not appear, then
the JDK is already installed.

For Windows systems, we’ll need to use the Oracle JDK. Download and run
the binary installer from the Oracle website.9 After the installation completes,
we’ll need to set the JAVA_HOME variable. (The exact path may vary).

C:\> SET JAVA_HOME="C:\Program Files\Java\jdk1.6.0_27"

In all cases, we can check that the JVM was installed correctly by running
this command:

$ java -version
java version "1.6.0_07"
Java(TM) SE Runtime Environment (build 1.6.0_07-b06-153)
Java HotSpot(TM) 64-Bit Server VM (build 1.6.0_07-b06-57, mixed mode)

Now that the JVM is ready, we can put JRuby on our machine.

Installing JRuby

The preferred method for installing JRuby on Unix and Linux systems requires
the Ruby Version Manager (RVM). It’s preferred not only because it makes
JRuby easy to install but also because it treats JRuby just like any other
Ruby platform. This allows us to use the ruby and gem commands without
putting the j character in front of them or prefixing every other command with
the jruby -S command. RVM is compatible only with bash systems, which does
not include Windows. Installing JRuby on Windows will be described in a
moment, but if you are using a bash system, run this command to install RVM:

9. http://www.oracle.com/technetwork/java/javase/downloads/index.html

• Click HERE to purchase this book now. discuss

Preparing Your Environment • xi

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

Figure 1—Mac OS X prompt to install Java

$ bash < <(curl http://rvm.beginrescueend.com/releases/rvm-install-head)

You’ll also have to reload your shell. The most dependable way to do this is
to close the current terminal and open a new one. Now we can use RVM to
install JRuby with this command:

$ rvm install jruby
jruby-1.6.7 - #fetching
jruby-1.6.7 - #extracted to ~/.rvm/src/jruby-1.6.7 (already extracted)
Building Nailgun
jruby-1.6.7 - #installing to ~/.rvm/rubies/jruby-1.6.7
jruby-1.6.7 - #importing default gemsets (/home/vagrant/.rvm/gemsets/)
Copying across included gems
Building native extensions. This could take a while...
Successfully installed jruby-launcher-1.0.12-java
1 gem installed

We’ll also need to set JRuby as the default Ruby.

$ rvm --default use jruby
Using ~/.rvm/gems/jruby-1.6.7

If you are using a system that does not support RVM, such as Windows, then
JRuby can be installed manually with these three steps:

1. Download the JRuby binaries from the official website.10

2. Unpack the downloaded file, which will create a jruby-<version> directory.
3. Add jruby-<version>/bin to the PATH.

Without RVM, we’ll have to modify the commands that are used in this book.
RVM allows us to invoke JRuby without using the jruby or jgem command, so
we’ll have to change all ruby commands in this book to jruby commands. We’ll
also need to prefix any other commands (such as bundle, gem, and rails) with
the jruby -S prefix, like this:

10. http://jruby.org/download

xii • Preface

• Click HERE to purchase this book now. discuss

http://jruby.org/download
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

$ jruby -S bundle install

We can check that JRuby was installed correctly with this command:

$ ruby -v
jruby 1.6.7 (ruby-1.8.7p357) (2012-02-22 3e82bc8) ...

You will never be asked to run any of the examples in this book with MRI
Ruby, so remember that when you see the ruby, gem, rake, or similar commands,
you are expected to be running them with JRuby.

Next, we need to install Git.

Installing Git

Git is a source control management tool that allows us to track versions of
our code. We’ll be using Git to switch between different versions of Twitalytics
as we deploy it to new platforms. Follow the instructions for downloading and
installing Git from the official website.11

It’s OK to use some other form of version control if you’d prefer, but the
examples in this book will be specific to Git. The examples will even work
without version control software, but that is not recommended. The source
code for each branch we’ll create is available from http://pragprog.com/titles/jkdepj/
source_code, so instead of switching branches, you can change to the directory
that corresponds to the chapter you’re reading.

Getting the Source Code

Now we’re ready to set up the Twitalytics application. We’ll start by download-
ing the source code from http://pragprog.com/titles/jkdepj/source_code. Unpack the
downloaded file and put it in your home directory. This will create a code
directory and inside of that will be a twitalytics directory, which contains the
baseline code for the application (in other words, the MRI-based code).

We need to change directories into this location and initialize it as a Git
repository.

$ cd twitalytics
$ git init
$ git add .
$ git commit -m "initial commit"

Next, we need to install Bundler, a dependency management tool for Ruby,
by running the following command:

11. http://git-scm.com/download

• Click HERE to purchase this book now. discuss

Preparing Your Environment • xiii

http://pragprog.com/titles/jkdepj/source_code
http://pragprog.com/titles/jkdepj/source_code
http://pragprog.com/titles/jkdepj/source_code
http://git-scm.com/download
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

$ gem install bundler

Now we can use Bundler to install Twitalytics’ dependencies by running this
command:

$ bundle install --without production

We’ve added the --without production option to exclude the pg gem, which requires
that PostgreSQL be installed. We’ll take care of this later in the book by
switching to some JRuby database adapters that are just as fast and don’t
rely on native code.

Our development environment is ready, but we won’t be able to run Twitalytics
with JRuby yet; it works only under MRI. We’ll port it to JRuby in Chapter
1, Getting Started with JRuby, on page ?.

Online Resources

Several online resources can help if you’re having trouble setting up your
environment or running any of the examples in this book.

For Java-related problems, the Java.net community has forums12 and
numerous Java-related articles.

For JRuby-related problems, the official JRuby website13 has links to several
community outlets. The most useful of these are the mailing list14 and the
#jruby IRC channel on FreeNode.15

For Trinidad-related problems, there is a mailing list16 and a wiki.17

For TorqueBox-related problems, there is a mailing list,18 extensive documen-
tation,19 and the #torquebox IRC channel on FreeNode.

12. http://www.java.net/forum
13. http://jruby.org/community
14. http://xircles.codehaus.org/projects/jruby/lists
15. http://freenode.net/
16. http://groups.google.com/group/rails-trinidad
17. https://github.com/trinidad/trinidad/wiki
18. http://torquebox.org/community/mailing_lists/
19. http://torquebox.org/documentation/

xiv • Preface

• Click HERE to purchase this book now. discuss

http://www.java.net/forum
http://jruby.org/community
http://xircles.codehaus.org/projects/jruby/lists
http://freenode.net/
http://groups.google.com/group/rails-trinidad
https://github.com/trinidad/trinidad/wiki
http://torquebox.org/community/mailing_lists/
http://torquebox.org/documentation/
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

