
Extracted from:

Deploying with JRuby
Deliver Scalable Web Apps Using the JVM

This PDF file contains pages extracted from Deploying with JRuby, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

2.1 Creating a Virtual Server

Deployment is the process of taking code or binaries from one environment
and moving them to a another environment where they can be executed. In
our case, we’ll be moving code from our development machine to a production
server. We already have a development environment configured, but we still
need to create a production environment that can be used as the target of
our deployments. To do this, we’ll use Vagrant1 and VirtualBox.2 These tools
reduce the process of provisioning a virtual server to just a few steps.

The instructions in this chapter will describe how to build an Ubuntu Linux
virtual machine on a Linux or Unix host system. But you can build your
deployment environment with any platform you want. We’ll try to address a
few variations in Section 2.4, Using Alternative Platforms, on page ?. It’s best
to practice on an environment that is typical of the ones you will use in pro-
duction, so you should pick one that makes sense. But the following steps
will be specific to Ubuntu, VirtualBox, and Vagrant.

Let’s get started by installing VirtualBox. Go to virtualbox.org,3 and download
and run the installer now. The VirtualBox user interface will open at the end
of the installation, but you can close it. We’re going to drive VirtualBox with
Vagrant. To install Vagrant, download the binary installer for your operating
system from the official website4 and run it. The installer adds a vagrant com-
mand to our path, so we can check that both Vagrant and its connection to
VirtualBox are working by running the following:

$ vagrant --version
Vagrant version 1.0.1

We could have installed the Vagrant gem, but that is not the preferred method
of installation, since certain Vagrant commands do not work on JRuby. These
include vagrant ssh and vagrant reload. It is possible to work around these deficien-
cies by running the vagrant-ssh script provided with the source code and by
running vagrant halt && vagrant up, respectively, but using the binary distribution
saves us a lot of time.

Now we’re ready to build our deployment environment. The following command
will create a fully functioning virtual machine running Ubuntu:

$ vagrant box add base-jruby http://files.vagrantup.com/lucid64.box

1. http://vagrantup.com/
2. https://www.virtualbox.org/
3. https://www.virtualbox.org/wiki/Downloads
4. http://downloads.vagrantup.com/tags/v1.0.1

• Click HERE to purchase this book now. discuss

http://vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Downloads
http://downloads.vagrantup.com/tags/v1.0.1
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

[vagrant] Downloading with Vagrant::Downloaders::HTTP...
[vagrant] Downloading box: http://files.vagrantup.com/lucid64.box
[vagrant] Copying box to temporary location...
[vagrant] Extracting box...
[vagrant] Verifying box...
[vagrant] Cleaning up downloaded box...

Note that the lucid64.box file is very large (about 250MB), so the previous com-
mand may take some time to run.

Next, we’ll move into the twitalytics directory, which contains the Git repository
we created in Preface, on page ?. This is where we’ll keep an image of our
box along with some configuration files that we want under version control.
To create these configuration files, we need to run the vagrant init command
with the base-jruby argument.

$ cd ~/code/twitalytics
$ vagrant init base-jruby

This creates a Vagrantfile, which tells Vagrant the box that we want to interact
with it when we use the vagrant command. Now we can boot our virtual machine
like this:

$ vagrant up
[default] Importing base box 'base-jruby'...
[default] The guest additions on this VM do not match the install version of
VirtualBox! This may cause things such as forwarded ports, shared
folders, and more to not work properly. If any of those things fail on
this machine, please update the guest additions and repackage the
box.

Guest Additions Version: 4.1.0
VirtualBox Version: 4.1.8
[default] Matching MAC address for NAT networking...
[default] Clearing any previously set forwarded ports...
[default] Forwarding ports...
[default] -- 22 => 2222 (adapter 1)
[default] Creating shared folders metadata...
[default] Clearing any previously set network interfaces...
[default] Booting VM...
[default] Waiting for VM to boot. This can take a few minutes.
[default] VM booted and ready for use!
[default] Mounting shared folders...
[default] -- v-root: /vagrant

The VM is running! Let’s log into it with the following command:

$ vagrant ssh
Linux lucid64 2.6.32-33-server #70-Ubuntu SMP ...
Ubuntu 10.04.3 LTS

6 •

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

Welcome to the Ubuntu Server!
* Documentation: http://www.ubuntu.com/server/doc
Last login: Mon Oct 17 14:24:10 2011 from 10.0.2.2
vagrant@lucid64:~$

The vagrant@lucid64:~$ prompt means that we are inside our virtual box.

Next, we need to update the system’s package manager. Ubuntu is a Debian-
based environment that uses the Advanced Packaging Tool (APT) to install
software, which we can update with the following command:

vagrant@lucid64:~$ sudo apt-get update

Finally, we need to exit the virtual machine and add everything we’ve created
to our Git repository. We’ll put these changes in a new deployment branch and
merge them in later, so run these commands:

$ git checkout -b deployment jruby
$ git add .
$ git commit -m "Added Vagrant configuration"

Our configuration is now under version control, and our virtual operating
system is ready! Now we need to install some software on it.

• Click HERE to purchase this book now. discuss

Creating a Virtual Server • 7

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

