Extracted from:

Deploying with JRuby

Deliver Scalable Web Apps Using the JVM

This PDF file contains pages extracted from Deploying with JRuby, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

The
Pragmatic

ogramimers

Deploym% vmth

Deliver Scalable Web Apps
Using the JVM

Joe Kutner
Edited by Brian P. Hogan

The Facets ‘ s 0 of Ruby Series

1.2

Introducing Warbler

Warbler is a gem that can create a web application archive (WAR) file from a
Rails, Merb, or Rack-based application.

A WAR file is a zip file that follows a few conventions, but we don’t have to
worry about those conventions because Warbler takes care of them for us.
What we do need to know is how to use the Warbler commands to package
our application.

The WAR file that Warbler creates will be completely self-contained and ready
to be deployed to a Java web server. Warbler bundles JRuby, your web
framework, and all of the dependencies needed to adapt a Ruby web applica-
tion to a Java-based container.

To demonstrate Warbler, let’s create the simplest web application we can.
First, we'll create a directory called myapp. In that directory, we’ll create a
config.ru file and put the following code into it:

Warbler/myapp/config.ru
run lambda { |env|

[200, {'Content-Type' => 'text/html'}, 'Hello, World']
}

Next, we need to install the Warbler gem to our JRuby gem path with this
command:

$ gem install warbler

Successfully installed jruby-jars-1.6.7
Successfully installed jruby-rack-1.1.4
Successfully installed rubyzip-0.9.6.1

Successfully installed warbler-1.3.4

4 gems installed

Warbler has two JRuby-specific dependencies. The jruby-jars gem includes the
core JRuby code and standard library files. This allows other gems to depend
on JRuby without freezing to a specific version. The other dependency, the
jruby-rack gem, is responsible for adapting the Java web server specification to
the Rack specification.

Next, let’s use the warble command to create our archive file. In the same
directory as the config.ru file we created earlier, we’ll run it with the war option.

$ warble war

This will create a myapp.war file. In Chapter 3, Deploying an Archive File, on

For now, we just want to be able to run it so we can demonstrate how Warbler

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkdepj/code/Warbler/myapp/config.ru
http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

A WAR file is a special case of Java archive (JAR) file; both are really just zip files.
But a WAR file is structured according to a standard that is recognized by all Java
web servers. We can take a closer look at this by extracting the WAR file we created
in this chapter with any unzipping tool. Inside of it, we find these essential components
(among many other things):

twitalytics.war
|-- index.html
| -- META-INF/
*-- MANIFEST.MF
' -- WEB-INF/
|-- lib/
*-- web.xml

The top-level directory contains all client-accessible content, which is equivalent to
the public directory in a Rails application. This is where we’ll find all of the HTML files,
images, and other static content. The WEB-INF directory contains all the dynamic content
for our web application. This includes our Ruby scripts, and the Java libraries need
to run a JRuby application. The META-INF directory contains basic metadata about the
WAR file, such as who created it and when it was created.

Inside the WEB-INF directory is the web.xml file, which is the most important part of the
archive. It contains a description of how the components in the web application are
put together at runtime. It's similar to the config/application.rb, config/environment.rb, and
config/routes.rb files of a Rails application all put together into a single descriptor. For-
tunately, Warbler handles the creation of this file for us based on the settings in our
config/warbler.rb file.

A WAR file can be digitally signed, which creates a checksum for each file contained
in the archive. This is used by a web server to ensure that no one has tampered with
it or that it has not been corrupted in some way. If the checksums do not match,
then the server won't load the files.

works. To do this, we’ll create an executable WAR file. Let’s build the WAR
file again by running the same command with the executable option.

$ warble executable war

This will create a WAR file that is capable of running on its own, without the
need for a free-standing Java web server. You probably won’t want to use this
in production, but it will help us test our archive file. We can run it with this
command:

$ java -jar myapp.war

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

Introducing Warbler ¢ 3

When the server is started, you’ll be able to access the application at
http://localhost:8080.

That’s all you need to know to get started with Warbler. Now let’s make some
adjustments to the Twitalytics application. It wasn’t built to run on JRuby,
so it has some code that’s specific to MRI. We're going to fix these parts so
they work on our new platform.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkdepj
http://forums.pragprog.com/forums/jkdepj

