
Extracted from:

Deploying with JRuby 9k
Deliver Scalable Web Apps Using the JVM

This PDF file contains pages extracted from Deploying with JRuby 9k, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Deploying with JRuby 9k
Deliver Scalable Web Apps Using the JVM

Joe Kutner

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-169-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Creating a JRuby Microservice
In the previous section, you packaged a simple Rack application that was
compatible with JRuby, but a real application will require more than just
Rack. In this section, you’ll package a small Sinatra-based microservice into
a WAR file. Warbler is great for small services like this because it produces
a portable lightweight artifact you can deploy quickly without any baggage.

Unfortunately, this service is an integral part of Twitalytics and it’s under
more load than MRI can handle. Porting it to JRuby to will increase its
throughput by allowing the application to process each request asynchronous-
ly. In this way, the request threads won’t block while waiting for external
services or doing data processing. To begin, move into the stock-service
sample code.

$ cd ~/code/stock-service

This directory contains the code for a small pure-Ruby HTTP service. The
service accepts a POST request with some text. It searches the text for the
names of publicly traded companies and then annotates the text with current
stock price quotes for those companies. Open the config.ru file and you’ll see
the handler:

stock-service/config.ru

post '/stockify' do
text = request.body.read.to_s
stocks = Stocks.parse_for_stocks(text)
quotes = Stocks.get_quotes(stocks)
new_text = Stocks.sub_quotes(text, quotes)

end

The first line in the handler for the /stockify route captures the body of the
request. The second line passes the text to the parse_for_stocks function, which
returns a list of symbols matching any company names mentioned in the
text. The third line uses the get_quotes function to retrieve current prices for
the stocks from a Yahoo! API. The last line combines it all by adding the
markup to the text.

Before making any changes, initialize a Git repository and create a branch
by running these commands:

$ git init
$ git add -A
$ git commit -m "initial commit"
$ git checkout -b warbler
Switched to a new branch 'warbler'

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkdepj2/code/stock-service/config.ru
http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

Now you can safely configure Warbler while preserving your master branch.

The first step in porting this service to JRuby is adding Warbler to the appli-
cation’s dependencies. Open the Gemfile and put this code at the end of it:

Warbler/stock-service/Gemfile

group :development do
gem 'warbler', '2.0.1'

end

The Warbler dependency is in a development group because it’s only needed to
build a WAR file. You don’t need it in production.

Now run Bundler to install the service’s dependencies.

$ bundle install --binstubs

You’re ready to package the app into an executable WAR file with Warbler.
Since you don’t want to type the executable directive every time you package
the app, you’ll begin by adding a Warbler configuration file. Create a config/war-
ble.rb file by running this command:

$ bin/warble config

The new file contains a wealth of instructions and examples for the different
configuration options, which are helpful to read because you never know
what you’ll want to change. Don’t worry about preserving its contents. You
can always re-create it by running warble config again. Given that safety net,
replace the entire contents of the config/warble.rb file with this code:

Warbler/stock-service/config/warble.rb

Warbler::Config.new do |config|
config.features = %w(executable)
config.jar_name = "stock-service"

end

Now when you run the warble command, it will detect this configuration and
generate an executable WAR file even when you omit the executable directive
from the command line. Give it a try:

$ bin/warble war

This generates a stock-service.war file, which you can execute by running this
command:

$ java -jar stock-service.war

With the Java process running, test out the service by opening another termi-
nal window and executing this command:

• 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config/warble.rb
http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

$ curl -d "Hello Apple, a computer company" http://localhost:8080/stockify
"Hello <div class="stock" data-symbol="AAPL"
data-day-high="102.14">Apple</div>, a computer company"

The server responds with an marked-up version of the original text containing
current stock price information. Because it depends on an external API, the
service does a lot of waiting. This causes the threads that are handling
incoming HTTP requests to be blocked. It looks like the following figure.

Client Server Database

Block wait

Now imagine a request thread being freed up to handle other requests instead
of blocking for a single request to finish. It looks like the following figure.
That’s called asynchronous request processing, and it can dramatically
improve throughput in an I/O-constrained application (such as an app that
relies heavily on a database or external service).

Client Server Database

Async wait

• Click HERE to purchase this book now. discuss

Creating a JRuby Microservice • 3

http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

The JVM supports asynchronous I/O in several forms. For this microservice,
you’ll use an asynchronous context, which is a standard feature of Java, with
a background thread to free up your request thread. First, enable the asyn-
chronous capabilities of the web server by adding this line to the config block
in your config/warble.rb file:

Warbler/stock-service/config/warble.rb

config.webxml.servlet_filter_async = true

Then, add these two lines of code to the beginning of the POST handler:

Warbler/stock-service/config.ru

response.headers["Transfer-Encoding"] = "chunked"
async = env['java.servlet_request'].start_async

The first line sets a standard HTTP header that will ensure the client’s request
is kept open while the app does its asynchronous processing. The second line
creates a new asynchronous context. Now wrap the original four lines of the
POST handler in a Thread like this:

Warbler/stock-service/config.ru

text = request.body.read.to_s
Thread.new do

begin
puts "Thread(async): #{Thread.current.object_id}"
stocks = Stocks.parse_for_stocks(text)
quotes = Stocks.get_quotes(stocks)
new_text = Stocks.sub_quotes(text, quotes)
async.response.output_stream.println(new_text)

ensure
async.complete

end
end

The new Thread will allow the processing to happen in the background so the
POST handler can return. And instead of the handler simply returning some
string, it will write the output to the asynchronous context. You’ll also add a
puts statement that logs the ID of the request thread. Add this line to the end
of the POST handler (outside the Thread body).

Warbler/stock-service/config.ru

puts "Thread(main) : #{Thread.current.object_id}"

Now repackage the WAR file and run it again:

$ bin/warble
$ java -jar stock-service.war

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config/warble.rb
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config.ru
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config.ru
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service/config.ru
http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

And invoke the service with the same curl command as before:

$ curl -d "Text about Apple, a computer company" http://localhost:8080/stockify

The output’s the same, but in the logs you’ll see the different thread identifiers:

Thread(main) : 2332
Thread(async): 2330

Keep in mind that puts is not atomic, so you might get a bit of interweaving
in the output.

This is great, but there’s still a problem with the code. The number of threads
this service can create is unbounded, which could overrun your system. To
make things worse, creating a new thread is an expensive operation. You can
fix both of these issues by using a thread pool executor. This is a great
example of a kind of concurrency issue you must consider when using JRuby.

You can add a thread pool to the application with only a few lines. First, add
a dependency on the concurrent-ruby gem to the Gemfile by adding this code to it:

Warbler/stock-service-thread-pool/Gemfile

gem 'concurrent-ruby', require: 'concurrent'

And run Bundler to install it:

$ bundle install --binstubs

Now modify the config.ru file to use the new gem by creating a thread pool.
Immediately after the end of the App class, add this line of code:

Warbler/stock-service-thread-pool/config.ru

App.set :thread_pool,
Concurrent::ThreadPoolExecutor.new(max_threads: 100)

This uses the ThreadPoolExecutor class to create a cached thread pool and adds
it as a setting on the App class. A cached thread pool will grow organically and
reuse threads as needed. It also prevents thread starvation by setting an
upper bound on the number of threads with the max_thread option.

You can use the thread pool by replacing the Thread.new invocation in the POST
handler with a call to settings.thread_pool.post, as shown here:

Warbler/stock-service-thread-pool/config.ru

settings.thread_pool.post do
begin

puts "Thread(async): #{Thread.current.object_id}"
stocks = Stocks.parse_for_stocks(text)
quotes = Stocks.get_quotes(stocks)

• Click HERE to purchase this book now. discuss

Creating a JRuby Microservice • 5

http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-thread-pool/Gemfile
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-thread-pool/config.ru
http://media.pragprog.com/titles/jkdepj2/code/Warbler/stock-service-thread-pool/config.ru
http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

new_text = Stocks.sub_quotes(text, quotes)
async.response.output_stream.println(new_text)

ensure
async.complete

end
end

Now run Bundler again, repackage with Warbler, run the app, and make the
curl request a few more times. In the logs, you’ll see that the same thread is
being used for the asynchronous part of the service each time it’s invoked.

Thread(main) : 2332
Thread(async): 2330
Thread(main) : 2334
Thread(async): 2330
Thread(main) : 2336
Thread(async): 2330

In practice, you could make this service even more reactive by using an
asynchronous HTTP client to invoke the Yahoo! service. And if the parse_for_stocks
is going to be expensive or invoke an external service, you could put it in its
own thread. Steps like these further eliminate bottlenecks in the system,
increasing the potential throughput. But they’re possible only with a truly
concurrent platform such as JRuby. You’ll learn to implement some of these
ideas later in the book.

Before moving on, commit your changes to the warbler branch with the git add
and git commit commands:

$ git add Gemfile Gemfile.lock config config.ru
$ git commit -m "Updated for JRuby"

Your microservice is now ready to be deployed to production with Warbler.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

Joe asks:

What Is Truffle?
If you follow the JRuby project on Twitter or read the JRuby mailing list, you may
have heard about a project called Truffle.

Truffle is a research project sponsored by Oracle Labs.a It’s an implementation of the
Ruby programming language on the JVM using the Graal dynamic compiler and the
Truffle AST interpreter framework.b

In early 2014, Truffle was open sourced and integrated into the larger JRuby project.
The Truffle developers and JRuby developers have been working alongside each other,
sharing code, and even sharing a mailing list for a while now. They’re not so much
competitors as they are contemporaries.

Truffle has the potential to achieve peak performance well beyond what’s possible
with standard JRuby, but it’s not production ready. Major components such as
OpenSSL and networking are yet to be completed. It also requires an experimental
JVM (Graal) and doesn’t work with a standard JVM.

You can learn more about Truffle from the project’s official website,c which is hosted
by its lead developer.

a. http://labs.oracle.com/
b. http://openjdk.java.net/projects/graal/
c. http://chrisseaton.com/rubytruffle/

• Click HERE to purchase this book now. discuss

Creating a JRuby Microservice • 7

http://labs.oracle.com/
http://openjdk.java.net/projects/graal/
http://chrisseaton.com/rubytruffle/
http://pragprog.com/titles/jkdepj2
http://forums.pragprog.com/forums/jkdepj2

