Extracted from:

Developing for Apple Watch

Your App on Their Wrists

This PDF file contains pages extracted from Developing for Apple Watch, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ematic
Ogrammmers

Developing for
Apple Watch

Your App on Their Wrists

7~

~
—
7 "

5 ,i ;//(« . Jeff Kelley

edited by Rebecca Gulick

& %
> \//((\/ ~
(//(" 6)/ < ///19(‘ . / /f}(\) ~
/?// S¢ /,/%,ujf)) Va
%5/..% RNEZ < ~—

Developing for Apple Watch

Your App on Their Wrists

Jeff Kelley

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)

Candace Cunningham (copyeditor)
Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-068-4

Encoded using the finest acid-free high-entropy binary digits.

Book version: P2.0—July 2015

https://pragprog.com
rights@pragprog.com

Meet the Interface Objects

If this were a book on iOS in general and this chapter were the chapter on
UlView, it would be insane to begin with a list of all of the UlView subclasses.
Lucky for us, this is a book on WatchKit, and there are only 11 subclasses
of WKinterfaceObject to deal with. Expect this number to grow as WatchKit
matures, much like the iPhone SDK matured as it became the iOS SDK. I'll
divide the interface objects into three categories: objects that display data;
objects that receive user input; and objects used for layout. Let’s meet our
interface objects!

Objects That Display Data

We've already seen one of these interface objects: WKinterfaceLabel, which we
used to display “Hello, Watch!” to our users. Labels act much like UlLabel in
UIKit, and you can call setText() or setAttributedText() to change its contents, just
like in UIKit. The other objects in this category include WKinterfaceTimer and
WKinterfaceDate, which help your watch app tell time. A timer object counts
down to a given moment in time, represented by an NSDate, using a format

you specify.

The format must be specified in Interface
Builder, but once you have created your timer,
you can change it by calling setDate() on it.
Using its start() and stop() methods, you can
control whether your WKinterfaceTimer is updat- Label
ing, though it always counts down to the same
date, regardless of you stopping it. Finally, 9/ 9/ 1 4, 10:09 AM
WKinterfaceDate displays the current date and/or 0:59:59

time to the user in a label. Like a timer, you -

must set up your date formatting in Interface r Image R
Builder. Once you've created a date object,

you can use setTimeZone() and setCalendar() to o _ - J
adjust the display of the date. There are two
more interface objects in this category, and
you can see them all in this image.

Another important object is WKinterfacelmage,
which acts like UllmageView on iOS, displaying
images to the user. Image objects support A_ 4
displaying static and animated images with
setimage(), setimageData(), and setimageNamed()

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

°6

methods, and if you supply template images, you can provide a tint color
using setTintColor(). Images in your WatchKit app can come from your watch
app’s asset catalog or your WatchKit extension, and there are significant
performance differences between the two, which we’ll discuss later in this
book, on page ?.

The last interface object you can use to display data to the user is WKinter-
faceMap. Like its MKMapView counterpart, the map object displays a map using
Apple’s mapping service. You can add your own pins to the map using its
addAnnotation(_:withPinColor:) method, allowing you to show locations to your users.
If you have a custom image to use instead of the default colored pins, you
can use addAnnotation(_:withimage:centerOffset:) or addAnnotation(_:withimageNamed:cen-
terOffset:), providing an offset in case you need to move the pin image relative
to the map location (normally the pin image is centered over the location).
You’'ll want to position the map in the proper location so users see your pins,
which you’ll do with setVisibleMapRect() or setRegion(). These methods take the
same MapKit types as MKMapView.

Interacting with Maps
There’s one caveat to using WKinterfaceMap: once you position the
map, the user can’t interact with it. There’s no zooming, panning,
or selecting of pins. Scrolling the watch’s Digital Crown will only
scroll your interface controller’s content, if there’s enough to scroll.
When the user taps the map, the watch’s Maps app opens. The
center of the visible location of your map is a pin in the user’s
Maps app. This allows your users to get directions or anything
else they’d be able to do in the Maps app normally. If you want to
display a specific location to users, set that location as the center
of your map; in the Maps app on the watch, the users will be able
to get directions or anything else they'd normally do with a map
location.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

Meet the Interface Objects © 7

Objects That Receive User Input

On iOS a middleman—UIControl—sits between
UlView and objects that are meant for user
interaction. Although there’s no equivalent
intermediate class in WatchKit, some interface Button
objects embody the spirit behind controls on
i0S. We've already seen WKinterfaceButton, which
allows us to call a method when the user taps Switch .
the button. The method it calls, unlike UlButton,
must be defined in our storyboard. Aside from
buttons, there are switches and sliders: WKIn- +
terfaceSwitch and WKinterfaceSlider, respectively.
They mostly act like UlSwitch and UlSlider, with
a few differences. Visually, a WKinterfaceSwitch
looks a lot like a WKinterfaceButton, with a title
label in front of the background, but there’s also a switch control on the right
side. Sliders have a similar appearance, with incrementing and decrementing
buttons on either side and the main slider in the middle. You can see all of

these objects in this image.

Sliders and switches, just like buttons, require you to set up the method they
call in your storyboard. The method you write for a switch must take a Bool
parameter for the switch’s value, and a slider’s method must take a Float. Both
are called every time the user adjusts the value. For sliders you have some
additional control: in the storyboard you can set the minimum and maximum
value for the slider, and either in the storyboard or by calling setNumberOfSteps()
you can set the number of steps between those values. If you wanted to make
a slider that could select any integral value between O and 5, you'd set the
minimum to O, the maximum to 5, and the number of steps to 6.

Objects Used for Layout

The final category of interface objects is an interesting one; these objects exist
to help out with WatchKit’s unique layout system. The most important of
these is WKinterfaceGroup, which is so vital to the watch UI that it has its own

you more freedom in how they’re laid out. Groups can even contain other
groups, allowing you to create complex hierarchies of layout. Along with
groups comes WKinterfaceSeparator, which is by far the simplest of all interface
objects—it’s basically a line drawn between other objects to separate them,
and it has but one method for you to call, setColor().

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

°8

Our final interface object that helps with layout is WKinterfaceTable. Since every
interface object you use must be created in your storyboard, using a table is
one of the only ways to get dynamic content into your app. Each row in the
table is actually a group, so you can lay out whatever objects you need in
each row. We'll cover tables more in their own chapter, on page ?.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

