
Extracted from:

Developing for Apple Watch
Your App on Their Wrists

This PDF file contains pages extracted from Developing for Apple Watch, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Developing for Apple Watch
Your App on Their Wrists

Jeff Kelley

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Candace Cunningham (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-068-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—July 2015

https://pragprog.com
rights@pragprog.com

Responding to User Actions in Push Notifications
Given that the ideal watch app allows your users to unlock their iPhones less,
one of the best things you can offer them is actionable push notifications.
Sometimes all you need from the user is a single tap of a button. Consider a
social networking app where users can send invitations to events. If your app
sends a push notification saying that your user has received an invitation,
you could offer Accept and Decline buttons right in the notification. Then,
without needing to open your app at all, the user has taken care of the task
right then and there.

Registering Categories
The key to actionable notifications is the concept of categories. You’ll give
your notifications categories—arbitrary strings you create—to differentiate
them. It’s up to you to make as many or as few categories as you need, but
each notification for a given category will have the same options. When your
app starts, you’ll register these categories with the system. Once they’re reg-
istered, any push notifications that come in with a category set will automat-
ically show the relevant options. Registering the category is a laborious pro-
cess. First, you’ll create the actions:

ActionableNotifications/ActionableNotifications/AppDelegate.swift
let acceptAction = UIMutableUserNotificationAction()

acceptAction.activationMode = .Background
acceptAction.authenticationRequired = true
acceptAction.identifier = "Accept"
acceptAction.title = "Accept"

let declineAction = UIMutableUserNotificationAction()

declineAction.activationMode = .Background
declineAction.authenticationRequired = true
declineAction.identifier = "Decline"
declineAction.title = "Decline"

let maybeAction = UIMutableUserNotificationAction()

maybeAction.activationMode = .Background
maybeAction.authenticationRequired = true
maybeAction.identifier = "Maybe"
maybeAction.title = "Maybe"

let deleteAction = UIMutableUserNotificationAction()

deleteAction.activationMode = .Background

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkwatch/code/ActionableNotifications/ActionableNotifications/AppDelegate.swift
http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

deleteAction.authenticationRequired = true
deleteAction.destructive = true
deleteAction.identifier = "Delete"
deleteAction.title = "Delete"

For every action you want to offer, you’ll create a UIMutableUserNotificationAction to
represent it, giving it an identifier to identify it later, a title to show the user,
and some other options, such as whether authentication is required. You’ll
use that for sensitive actions, such as replying to this calendar invitation.
You can also set destructive, which will color the option red to inform users that
their action will have some destructive consequences: deleting a message,
blocking a user, etc. Once you’ve created your actions, you can create a cate-
gory to contain them:

ActionableNotifications/ActionableNotifications/AppDelegate.swift
let category = UIMutableUserNotificationCategory()Line 1

2

category.identifier = "Invitation"3

4

category.setActions([acceptAction, declineAction], forContext: .Minimal)5

6

category.setActions([acceptAction, maybeAction, declineAction, deleteAction],7

forContext: .Default)8

You’ll notice that you need to define the list of actions twice: first on line 5
and again on line 7. That’s because these notifications can appear in multiple
locations. When the notification is a banner on the user’s iPhone and he drags
it down to interact with it, only two buttons appear. If you’d only set up the
default context by passing UIUserNotificationActionContextDefault for the forContext:
parameter, the first two would be used: Accept and Maybe. Since we want
Accept and Decline to appear if there are only two choices, we pass in those
for the UIUserNotificationActionContextMinimal context.

Once you’ve created your category, you need to tell iOS that it exists. This is
just a few lines of code:

ActionableNotifications/ActionableNotifications/AppDelegate.swift
let categories: Set<NSObject> = [category]

let settings = UIUserNotificationSettings(forTypes: .Alert,
categories: categories)

UIApplication.sharedApplication().registerUserNotificationSettings(settings)

First, you create a set containing all of your app’s categories. Then you register
a UIUserNotificationSettings object, which you create for an alert type. In this case
we’ll use .Alert since badges and sounds don’t allow us to present buttons.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkwatch/code/ActionableNotifications/ActionableNotifications/AppDelegate.swift
http://media.pragprog.com/titles/jkwatch/code/ActionableNotifications/ActionableNotifications/AppDelegate.swift
http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

Once that’s complete, we’re done! Future push notifications or local notifica-
tions using that category will present these options.

Including Category Information in Notifications
For push notifications, setting the category of an alert is as easy as adding a
category key to the JSON payload your notification server sends to Apple. A
sample alert JSON payload would be as follows:

{
"aps": {

"alert": "Jane invited you to Launch Party!",
"category": "Invitation"

}
}

Note that the value we gave for the category key is the same as the identifier
we used when creating the category in code to register it. For a local notifica-
tion, simply set the category property:

ActionableNotifications/ActionableNotifications/ViewController.swift
let notification = UILocalNotification()

notification.alertBody = "Jane has invited you to Launch Party!"
notification.category = "Invitation"

UIApplication.sharedApplication().scheduleLocalNotification(notification)

Once you have this all set up, notifications like this
will appear on the watch.

When your user taps one of these actions, whether
it’s on Apple Watch or iPhone, you’ll need to write
some code to handle the response.

Responding to Actions
To respond to these actions inside of notifications,
the UIApplicationDelegate has two slightly different meth-
ods for your app delegate: application(_:handleActionWithI-
dentifier:forRemoteNotification:completionHandler:) and application(_:handleActionWithIdentifi-
er:forLocalNotification:completionHandler:). The former handles push notifications and
the latter handles local notifications. The final completionHandler argument is a
closure for you to call when your work is finished; it’s how the system knows
you’ve handled the action. In our invitation example, responding is easy:

ActionableNotifications/ActionableNotifications/AppDelegate.swift
func application(application: UIApplication,

• Click HERE to purchase this book now. discuss

Responding to User Actions in Push Notifications • 7

http://media.pragprog.com/titles/jkwatch/code/ActionableNotifications/ActionableNotifications/ViewController.swift
http://media.pragprog.com/titles/jkwatch/code/ActionableNotifications/ActionableNotifications/AppDelegate.swift
http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

handleActionWithIdentifier identifier: String?,
forLocalNotification notification: UILocalNotification,
completionHandler: () -> Void) {
if notification.category == "Invitation" {

if identifier == "Accept" {
// Handle accepted invitation

}
else if identifier == "Maybe" {

// Handle tentative response
}
else if identifier == "Decline" {

// Handle declined invitation
}
else if identifier == "Delete" {

// Delete invitation
}

}

completionHandler()
}

First, examine the notification itself to see its category. In an app where you
have multiple categories, it’s important that the right code is running. Next,
use the identifier argument to see which action the user selected. Finally, after
doing whatever you need to do to handle the action, call the completion
handler to tell iOS you’re done. That’s it! Just like that, you’ve run some code
in response to a user selecting a notification action on the watch.

By using actionable notifications, you’ve future-proofed your app for Apple
Watch and any other connected device. Instead of writing code for a specific
screen or device, you’ve written code that tells iOS what the valid options are,
allowing the iPhone or Apple Watch device to determine the best way to get
your user’s feedback.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

