
Extracted from:

Developing for Apple Watch
Your App on Their Wrists

This PDF file contains pages extracted from Developing for Apple Watch, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Developing for Apple Watch
Your App on Their Wrists

Jeff Kelley

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Candace Cunningham (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-068-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—July 2015

https://pragprog.com
rights@pragprog.com

Sharing Data Between Apps
All iOS apps are sandboxed, and WatchKit extensions are no different. The
unparalleled security this offers means that we need to do a little bit of extra
work to allow the WatchKit extension and iPhone app to share data; by default,
their sandboxes cannot communicate. To solve this, we’ll create a new App
Group, essentially a shared container for file storage for our app. Just like we
added the HealthKit capability, head to the TapALap target settings and enable
App Groups under Capabilities. Click the + button in the App Groups section
to add a new one. We’ll provide a name to Xcode’s Add A New Container dialog
box. Much like the bundle ID, this uses reverse DNS-style names as conven-
tion, but with group prepended to it; the example for this project would be
group.com.pragprog.tapalap, but feel free to make it match your bundle ID if it dif-
fers. When we have an active group, we’ll also need to add it to the WatchKit
extension target settings. Enable App Groups, and we’ll see a check box for
the new group. Check it, and we’re done.

With App Groups enabled, we can share files as well as use a shared
NSUserDefaults domain. If your app uses Core Data, you can save your persistent
store to this location, allowing you to access it from either place. Obtaining
the place to store data is very easy:

let manager = NSFileManager.defaultManager()
let group = "group.com.pragprog.tapalap"
let url: NSURL = manager.containerURLForSecurityApplicationGroupIdentifier(group)

Once you have the NSURL for the container, you can save files to it and read
files from it just like you would any other filesystem path. All you need to do
is ensure that you pass the correct identifier to containerURLForSecurityApplication-
GroupIdentifier(). For TapALap, since we’re not using Core Data or storing files
to disk, we’ll go a simpler route and use NSUserDefaults to save the data.

If you’ve used NSUserDefaults in the past, you’ve likely used its standardUserDefaults()
method to save things to the default location. This works great in the sandbox,
but it has the same problem as file storage: calling standardUserDefaults() in your
iPhone app will save to a different user defaults store than calling standardUserDe-
faults() in your WatchKit extension. While this is acceptable for settings that
don’t apply to other parts of your app, it won’t work for saving data and
loading it from other parts of our app. To that end, we need to use our App
Group to save defaults to a common store. We’ll want to update the list of
saved runs when ending one, much like saving it to HealthKit, so return to
RunTimerInterfaceController.swift and add some code to endRun(), this time a new
method called saveRunToUserDefaults():

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

tapalap/tapalap WatchKit Extension/RunTimerInterfaceController.swift
func endRun() {

let contexts: [AnyObject]?

if let lapCount = laps?.count {
let run = Run(distance: track.lapDistance * Double(lapCount),

laps: laps!,
startDate: startDate!)

saveRunToUserDefaults(run)
saveRunToHealthKit(run)

contexts = [NSNull(), run]
}
else {

contexts = nil
}

let names = ["GoRunning", "RunLog"]

WKInterfaceController.reloadRootControllersWithNames(names,
contexts: contexts)

}
func saveRunToUserDefaults(run: Run) {

let defaults = NSUserDefaults(suiteName: "group.com.pragprog.tapalap")

if let defaults = defaults {
var savedRuns = defaults.objectForKey("Runs") as? [[NSObject: AnyObject]]

if savedRuns != nil {
savedRuns!.append(run.dictionaryRepresentation())

}
else {

savedRuns = [run.dictionaryRepresentation()]
}

defaults.setObject(savedRuns, forKey: "Runs")
defaults.synchronize()

}
}

Once again, we’ll use the dictionaryRepresentation() method of the Run to convert
the run into a Dictionary. The saveRunToUserDefaults() method adds this dictionary
to an array of dictionaries in the user defaults—creating an empty array if
needed—and then saves the new array back to the user defaults. The next
time we run the app, these will persist. Now that we’re saving the runs into
NSUserDefaults, we can use that data in the iPhone app.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkwatch/code/tapalap/tapalap WatchKit Extension/RunTimerInterfaceController.swift
http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

For the iPhone app, a simple table view displaying the user’s run history is
a good demonstration of saving data and using it in both locations. The View-
Controller class is as good a place as any for it, so open ViewController.swift and
add a runs() computed property to retrieve the runs:

tapalap/tapalap/ViewController.swift
var runs: [[NSObject: AnyObject]]? {

get {
let defaults = NSUserDefaults(suiteName: "group.com.pragprog.tapalap")!

return defaults.objectForKey("Runs") as? [[NSObject: AnyObject]]
}

}

This runs() getter simply creates a new NSUserDefaults using the same group ID
as the WatchKit app. Next, declare that the ViewController class conforms to the
UITableViewDataSource protocol:

tapalap/tapalap/ViewController.swift
class ViewController: UIViewController, UITableViewDataSource {

We don’t need the class to conform to the UITableViewDelegate protocol, as we’re
merely displaying the data, not interacting with it. To populate the table view
with our saved runs from NSUserDefaults, implement the UITableViewDataSource
protocol methods as follows:

tapalap/tapalap/ViewController.swift
func numberOfSectionsInTableView(tableView: UITableView) -> Int {

return 1
}

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
if let count = runs?.count {

return count
}
else {

return 0
}

}

func tableView(tableView: UITableView,
cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
let cellIdentifier = "RunCell"

var cell: UITableViewCell? =
tableView.dequeueReusableCellWithIdentifier(cellIdentifier) as?
UITableViewCell

if cell == nil {
cell = UITableViewCell(style: .Value1, reuseIdentifier: cellIdentifier)

• Click HERE to purchase this book now. discuss

Sharing Data Between Apps • 7

http://media.pragprog.com/titles/jkwatch/code/tapalap/tapalap/ViewController.swift
http://media.pragprog.com/titles/jkwatch/code/tapalap/tapalap/ViewController.swift
http://media.pragprog.com/titles/jkwatch/code/tapalap/tapalap/ViewController.swift
http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

}

if let runDictionary = runs?[indexPath.row] {
cell?.textLabel?.text =

distanceFormatter.stringFromMeters(runDictionary["distance"] as!
Double)

cell?.detailTextLabel?.text =
runDateFormatter.stringFromDate(runDictionary["startDate"] as!

NSDate)
}

return cell!
}

Just like in the WatchKit table, we want to reuse our formatters to avoid re-
creating them for every cell. Again, we can use lazy properties to create them
only as needed:

tapalap/tapalap/ViewController.swift
lazy var distanceFormatter: NSLengthFormatter = {

let distanceFormatter = NSLengthFormatter()
distanceFormatter.numberFormatter.maximumSignificantDigits = 3
return distanceFormatter

}()

lazy var runDateFormatter: NSDateFormatter = {
let runDateFormatter = NSDateFormatter()
runDateFormatter.dateStyle = .MediumStyle
runDateFormatter.timeStyle = .NoStyle
return runDateFormatter

}()

This is all pretty standard UITableView stuff. Quite different from WKInterfaceTable!
As a final step, we need to create the table view. Luckily, we can do that
entirely in our Main.storyboard file in the iPhone app’s group. Drag a new
UITableView onto the view controller’s view, filling it. Use the Pin button at the
bottom of the canvas to pin the top, bottom, left, and right edges of the table
view to its parent view. Next, control-drag from the table view to the view
controller and connect it to the dataSource outlet. Since we aren’t making
this table view interactive, we don’t need to set the delegate. Finally, to avoid
the table view running behind the status bar, select the view controller and
then select Editor → Embed In → Navigation Controller. This places a naviga-
tion bar at the top of the screen. We can add a title by double-clicking the
navigation bar above the table view; I chose Runs.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkwatch/code/tapalap/tapalap/ViewController.swift
http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

Build and run the watch app, save some
runs, and then build and run the
iPhone app. We’ll see our runs in the
table view we created, as shown.

Just like that, we’re sharing data from
the watch app to the iPhone app and
vice versa. NSUserDefaults is a powerful
class for sharing simple data like runs
and preferences, and App Groups make
it easy to share.

• Click HERE to purchase this book now. discuss

Sharing Data Between Apps • 9

http://pragprog.com/titles/jkwatch
http://forums.pragprog.com/forums/jkwatch

