
Extracted from:

Developing for Apple Watch,
Second Edition

Create Native watchOS 2 Apps with the WatchKit SDK

This PDF file contains pages extracted from Developing for Apple Watch, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Developing for Apple Watch,
Second Edition

Create Native watchOS 2 Apps with the WatchKit SDK

Jeff Kelley

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-133-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 3

WatchKit User Interfaces
Our HelloWatch example from the prior chapter worked, but it’s not winning
an Apple Design Award anytime soon. We need more than just a button and
a label in our WatchKit apps. We’re in luck, because WatchKit offers a bevy
of built-in user interface components. These UI components, called interface
objects in WatchKit, inherit from the WKInterfaceObject class, similar to UIView in
iOS. WatchKit has a unique layout system more akin to HTML tables than
iOS views. Let’s take a quick tour of interface objects and how they’re used;
then we’ll explore how they differ from UIView and its subclasses. By the end
of this chapter, you’ll have a better understanding of what UI components
are available to you in WatchKit, as well as how to position them onscreen
in WatchKit’s UI paradigm. Finally, you’ll get started on TapALap, the main
sample app we’ll be writing throughout the rest of this book.

Meet WKInterfaceObject
When you’re making user interfaces for 38mm and 42mm screen sizes, every
user interface element on the screen must be carefully considered. Not only
can fewer elements fit on the screen than on iOS, but due to the smaller size,
the user’s finger will necessarily obscure more of the screen while interacting
with it. These truths impact the design of every element, as well as the overall
design of watchOS apps in general.

From a code standpoint, there’s a huge difference between UIView and WKInter-
faceObject: you cannot subclass WKInterfaceObject to create your own user interface
objects. Instead of implementing custom rendering and touch handling,
watchOS apps compose the built-in interface objects and achieve their desired
user interface customizations through images and colors. You’ll also notice
that instead of setting properties on the interface objects directly, you’ll be
calling methods on the objects to set their properties indirectly. The reason

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

for this indirection is that the interface objects aren’t really in the WatchKit
extension that we’re writing. As you learned on page ?, the WatchKit app
and WatchKit extension are separate entities on the device, and the interface
objects live in the WatchKit app portion. The WKInterfaceObject instances we deal
with in the WatchKit extension represent the objects onscreen. Why methods
instead of properties? They’re write-only; you can’t inspect an interface object
for its state. Because neither Swift nor Objective-C has a mechanism for write-
only properties, this changes a simple task, such as setting the text of a label.
Where you would write this for iOS

self.label.text = "Hello, World!"

the equivalent code for a watchOS application would look like this:

self.label.setText("Hello, World!")

All WKInterfaceObject objects share some common properties that you can set,
either by calling methods on them or directly in the storyboard. Most of them
are familiar, if slightly different than their UIView counterparts: you can set
their width, height, and alpha, as well as make them hidden. In the storyboard,
you can check the Installed check box to determine if an interface object is
created when the storyboard loads. From there, the individual interface object
classes define more properties that you can set. Instead of enumerating them
one-by-one, we’ll look at them in three categories: objects that display data,
objects that receive user input, and objects used for layout.

Objects that Display Data
You’ve already seen one of these interface objects, WKInterfaceLabel, which you
used to display “Hello, Watch!” to your users. Labels act much like UILabel in
UIKit, and you can call setText() or setAttributedText() to change their contents,
just like in UIKit. The other objects in this category include WKInterfaceTimer
and WKInterfaceDate, which help your watch app tell time. A timer object counts
down to a given moment in time, represented by an NSDate, using a format
you specify. The format must be specified in Interface Builder, but once you’ve
created your timer, you can change it by calling setDate() on it. Using its start()
and stop() methods, you can control whether your WKInterfaceTimer updates,
though it always counts down to the same date, regardless of you stopping
it. Finally, WKInterfaceDate displays the current date and/or time to the user in
a label. Like setting up a timer, you must set up your date formatting in
Interface Builder. Once you’ve created a date object, you can use setTimeZone()
and setCalendar() to adjust the display of the date. There are three more interface
objects in this category, and you can see them all in this image.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

Interface objects for displaying data to the user. From top to bottom: WKInter-
faceLabel, WKInterfaceDate, WKInterfaceTimer, WKInterfaceImage, WKInterfaceMovie, and
WKInterfaceMap.

Another important object is WKInterfaceImage, which acts like UIImageView on iOS,
displaying images to the user. Image objects support displaying static and
animated images with setImage(_:), setImageData(_:), and setImageNamed(_:) methods,
and if you supply template images, you can provide a tint color using setTint-
Color(_:). Images in your WatchKit app can come from your watch app’s asset
catalog or your WatchKit extension.

• Click HERE to purchase this book now. discuss

Meet WKInterfaceObject • 7

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

WKInterfaceMovie is a similar class to WKInterfaceImage but for movies instead of
images. You can set a placeholder image using setPosterImage(_:) and a movie
URL using setMovieURL(_:). When the user taps the Play button, the movie will
begin playback if it’s stored locally on the device; otherwise, it’ll download
before playing. WKInterfaceMovie doesn’t support streaming, so if you want to
watch Netflix and chill, you won’t be doing it on your wrist. In general, the
watch is not designed to play movies, but for short clips, it can do in a pinch.

The last interface object you can use to display data to the user is WKInter-
faceMap. Like its MKMapView counterpart, the map object displays a map using
Apple’s mapping service. You can add your own pins to the map using its
addAnnotation(_:withPinColor:) method, allowing you to show locations to your users.
If you have a custom image to use instead of the default colored pins, you
can use addAnnotation(_:withImage:centerOffset:) or addAnnotation(_:withImageNamed:cen-
terOffset:), providing an offset in case you need to move the pin image relative
to the map location (normally the pin image is centered over the location).
You’ll want to position the map in the proper location so users see your pins,
which you’ll do with setVisibleMapRect() or setRegion(). These methods take the
same MapKit types as MKMapView.

Interacting with Maps

There’s one caveat to using WKInterfaceMap: once you position the
map, users can’t interact with it. There’s no zooming, panning, or
selecting of pins. Scrolling the watch’s Digital Crown will only
scroll your interface controller’s content, if there’s enough to scroll.
When the user taps the map, the watch’s Maps app opens. The
center of the visible location of your map is a pin in the user’s
Maps app. This allows your users to get directions or anything
else they’d be able to do in the Maps app normally. If you want to
display a specific location to users, set that location as the center
of your map; in the Maps app on the watch, the users will be able
to get directions or anything else they’d normally do with a map
location.

Objects that Receive User Input
On iOS, user interface objects that respond to user input derive from the
UIControl class, itself a subclass of UIView. Although there’s no equivalent inter-
mediate class in WatchKit, some interface objects embody the spirit behind
controls on iOS. You’ve already seen WKInterfaceButton, which allows you to call
a method when the user taps the button. Unlike UIControl’s action methods
that you can add with addTarget(_:action:forControlEvents:), you have to connect

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

WKInterfaceButton objects to @IBAction methods in your storyboard. Aside from
buttons, there are switches and sliders: WKInterfaceSwitch and WKInterfaceSlider,
respectively. They mostly act like UISwitch and UISlider, with a few differences.
Visually, a WKInterfaceSwitch looks a lot like a WKInterfaceButton, with a title label
in front of the background, but there’s also a switch control on the right side.
Sliders have a similar appearance, with incrementing and decrementing
buttons on either side and the main slider in the middle. You can see all of
these objects in this image.

Interface objects for receiving input from your user. From top to bottom:
WKInterfaceButton, WKInterfaceSwitch, WKInterfaceSlider, and WKInterfacePicker.

Sliders and switches, just like buttons, require you to set up the method they
call in your storyboard. The method you write for a switch must take a Bool
parameter for the switch’s value, and a slider’s method must take a Float. Both
are called every time the user adjusts the value. For sliders you have some
additional control: in the storyboard you can set the minimum and maximum
value for the slider, and either in the storyboard or by calling setNumberOfSteps()
you can set the number of steps between those values. If you wanted to make
a slider that could select any integral value between 0 and 5, you’d set the
minimum to 0, the maximum to 5, and the number of steps to 6.

New in watchOS 2 is a fantastic interface object for getting user input: WKIn-
terfacePicker. A picker allows the user to select from a list of elements. These
elements can be text, images, or both. What’s unique about pickers is that
instead of swiping the screen, as they might on iOS, your users will use the
Digital Crown on the side of the Apple Watch to select the values. This inter-
action feels great, whether selecting from photos in a photo album, remotely

• Click HERE to purchase this book now. discuss

Meet WKInterfaceObject • 9

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

controlling the climate settings in their car, or fine-tuning a setting with more
precision than a slider would comfortably allow. You can even place multiple
pickers onscreen at once; the currently active picker is optionally highlighted
with a green border and optional caption, as shown here:

Three WKInterfacePicker objects in one interface controller; the middle one is
selected with the caption Numbers.

You’ll see more on pickers in depth later on page ? as you add one to your
sample app. Pickers allow you to replace complicated input schemes like text
entry with simple Digital Crown interactions, so they’re a great addition to
any app that needs any input from a user.

Objects Used for Layout
The final category of interface objects is an interesting one; these objects exist
to help out with WatchKit’s unique layout system. The most important of
these is WKInterfaceGroup, which is so vital to the watch UI that it has its own
chapter coming up. In short, a group can contain other objects, allowing you
more freedom in how they’re laid out. Groups can even contain other groups,
allowing you to create complex hierarchies of layout. Along with groups comes
WKInterfaceSeparator, which is by far the simplest of all interface objects—it’s
basically a line drawn between other objects to separate them, and it has but
one method for you to call, setColor().

The final interface object that helps with layout is WKInterfaceTable. Since every
interface object you use must be created in your storyboard, using a table is
one of the only ways to get dynamic content into your app. Each row in the
table is actually a group, so you can lay out whatever objects you need in
each row. (More on tables later, in their own chapter.)

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

