
Extracted from:

Developing for Apple Watch,
Second Edition

Create Native watchOS 2 Apps with the WatchKit SDK

This PDF file contains pages extracted from Developing for Apple Watch, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Developing for Apple Watch,
Second Edition

Create Native watchOS 2 Apps with the WatchKit SDK

Jeff Kelley

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-133-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 5

Delivering Dynamic Content with Tables
Every piece of user interface we’ve seen so far in WatchKit has something in
common: it’s static. We create the watch app’s UI in Interface Builder, set it
up just so, and then use it in the app, but we can’t add or remove interface
objects. Sure, we can get clever and hide some portions of the UI, but there’s
one thing we haven’t yet seen: creating dynamic user interfaces that respond
to users’ data. In our iPhone app, we can create these interfaces manually,
perhaps placed inside a UIScrollView if there’s more than a screenful of content,
but it’s much more common—and easier—to use either UITableView or UICollec-
tionView. WatchKit targets much smaller screen sizes than UIKit, so it offers
us WKInterfaceTable, a simpler, stripped-down version of UIKit’s table views.

In this chapter, let’s explore tables in WatchKit. We’ll cover how they work,
how they differ from UIKit, and how to use them the right way. By the end of
this chapter, you’ll know how to present your data in rows, how to make it
perform well, and how to make it look fantastic.

Comparing WatchKit Tables and iOS Table Views
If table views on iOS have one thing going for them, it’s that they’re routine
fodder for introductory materials. Table views are where most developers new
to working with Apple platforms encounter the delegation design pattern.
Delegation is a routine stumbling block, most often encountered in UITableView.
WKInterfaceTable, by contrast, has no datasource to set and no delegate to implement,
and—most importantly—it eschews UIKit’s “don’t call us; we’ll call you”
paradigm in favor of requiring you to tell it in advance all of the data it’ll need
to display. If you’ve never used UITableView and have no idea what I’m talking
about, don’t worry. You don’t need to have used it to understand WKInterfaceTable.

The difference between the two, as with many features of the Apple Watch
UI, is that the display is divorced from the data. Your users scroll through

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

content on the watch, and given its performance concerns, achieving the 60-
frames-per-second scrolling users have come to expect from Apple devices
requires tradeoffs. Instead of running code every time a new row comes
onscreen, as you do with UITableView, you’ll populate the entire table at once,
allowing the watch’s processor to take a break while the user moves the
content up and down. This also helps battery life—another paramount concern
for Apple Watch apps.

Architectural differences aside, you’ll notice as soon as you drag a WKInterfac-
eTable onto the storyboard that each distinct type of row in the table is nothing
more than a WKInterfaceGroup. Unlike UIKit’s UITableViewCell, there’s no built-in
UI element to repurpose. Your table view rows will be fully custom groups,
configured with whatever interface objects make sense. To serve as a bridge
between your interface controller and your table rows, you’ll create objects
that coordinate the data, known as row controllers. Now, what to put in a
table? To introduce using tables to show data, let’s create a new screen in
TapALap—one for displaying the user’s run history in the app.

Row Types and Storyboard Groups
Every WKInterfaceTable delivers content to the user in vertically stacked rows.
To demonstrate this, let’s create a new interface controller in our running
app. Once the user is finished with a run, she’ll want to be able to quickly
scroll through a history of her runs, comparing distances and paces as she
goes. To that end, let’s make an interface controller with a table in it that
displays one row for each run, with the newest at the top.

First, open your watch app’s storyboard and drag in a new interface controller.
Give it the title “Run Log.” Next, create a new WKInterfaceController subclass and
name it RunLogInterfaceController, being sure to add it to your WatchKit extension
and not your iPhone app. You’ll come back and implement some methods
later on, but for now you just need the class to exist. Head back to the story-
board and select the interface controller you just made. In Xcode’s Identity
Inspector, under Custom Class, set the Class value to RunLogInterfaceController.
Now your storyboard and your subclass are in sync. Finally, drag the Main
arrow to the interface controller so the app starts right at that screen.

To implement the UI, you’ll need to head over to the Object Library and drag
a new WKInterfaceTable, listed simply as Table, onto the interface controller. By
default, it has one group inside. Each row type in the table is represented by
a group in your storyboard; the table will re-create that group for every row
of that type. For this row, you want to show the user the run’s date, distance,
and duration. You’ll use three WKInterfaceLabel objects for it and arrange them

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

in the group. As you saw in the chapter on groups, you can use subgroups
to arrange these labels nicely, and that’s what you’re going to do.

First, create the three labels by dragging them from Xcode’s Object Library
to the row group. To help keep track of them as you lay them out, you’ll give
them custom titles. In the Document Outline of the storyboard (if you don’t
see it on the left side of the storyboard, click Editor → Show Document Out-
line), you can press F and change the display name of a selected item. Instead
of Label, name these “Date Label,” “Distance Label,” and “Duration Label.”
Now you can see what you’re doing. The result you want is the date label in
large, bold text above the distance label, with the duration label on the right
side. To that end, select both date and distance labels and select Editor →
Embed In → Vertical Group. The duration label disappears; since the vertical
group is by default set to match the width of its container, it pushes everything
else away. Select the new group and, in Xcode’s Attributes Inspector, change
its width to Size To Fit Content. Now you’ll see all three on the same screen.

Select the duration label, change its font to the built-in Subhead style, and
set its horizontal position to Right. Change the date label’s font to the Headline
style and the distance label’s font to the Footnote style. Now your row is
looking pretty good, if a bit stretched out. There’s a lot of vertical space, so
select the group that contains the left two labels, open the Attributes
Inspector, and give it a custom spacing of 0. Now that you’ve done all this,
your interface controller in the storyboard should look like the following image.

Snazzy! After admiring your handiwork for a bit, you can start putting real
data into this row and see how it works. To do that, you need to create a row
controller object.

• Click HERE to purchase this book now. discuss

Row Types and Storyboard Groups • 7

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

Linking Content to the UI with Row Controllers
Looking at the interface object hierarchy in the storyboard’s Run Log interface
controller (if you don’t see it, select Editor → Show Document Outline), you
can see that your labels are nested inside a parent group, but that instead
of the group being a child of the table (which would match how it appears in
the interface editor), there’s an intermediate object that looks different, called
Table Row Controller. This is the row controller we’ve been talking about, and
it’s vital to understanding how tables work in WatchKit.

Row controllers are lightweight objects that sit between tables and row content.
Their entire role is to ferry data from your interface controller to the interface
objects you’ve set up in the storyboard. Your row controller is going to be
incredibly simple, let’s create it now and walk through what it needs to do.

You’ll need a new class for the row controller, and since you’ll be referencing
it from the storyboard, it’ll need to inherit from NSObject—storyboards use a
lot of internal NSObject magic. Name the class RunLogRowController. Create a new
Swift file called RunLogRowController.swift using the WatchKit Class template to
create the class.

Next, let’s set up outlets for your UI elements. You’ll make one for each label
(there’s no need to reference their containing groups for now), and name them
the same as they’re named in the storyboard:

Chapter 5/TapALap/TapALap WatchKit Extension/RunLogRowController.swift

@IBOutlet weak var dateLabel: WKInterfaceLabel!
@IBOutlet weak var distanceLabel: WKInterfaceLabel!
@IBOutlet weak var durationLabel: WKInterfaceLabel!

With that set up, you need to connect these outlets to your UI so that you
can reference the interface objects in code. Head back to the storyboard and
select the row controller object in the Run Log interface controller’s Document
Outline. In Xcode’s Identity Inspector, change its class to RunLogRowController.
In the Attributes Inspector, set its Identifier to RunRow. If you fail to do this,
the table won’t be able to create the row, because it uses this identifier to,
well, identify it. Now you can link it up with its outlets. For each label, Control-
drag from the row controller in the Document Outline to the label, selecting
the appropriate outlet.

Your UI is all hooked up and you need to put the appropriate data in it. To
keep the row controller class separate from your model objects, the row con-
troller will deal only with values: distance, duration, and date. Add a new
method, configure(date:distance:duration:), and it will take care of the UI for you:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/RunLogRowController.swift
http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

Chapter 6/TapALap/TapALap WatchKit Extension/RunLogRowController.swift

var dateFormatter: NSDateFormatter?
var distanceFormatter: NSLengthFormatter?
var durationFormatter: NSDateComponentsFormatter?

func configure(date date: NSDate, distance: Double, duration: NSTimeInterval) {
dateLabel.setText(dateFormatter?.stringFromDate(date))
distanceLabel.setText(distanceFormatter?.stringFromMeters(distance))
durationLabel.setText(durationFormatter?.stringFromTimeInterval(duration))

}

When a new RunLogRowController is created, the dateFormatter, distanceFormatter, and
durationFormatter properties are all nil. These are all NSFormatter subclasses to help
you convert numbers to strings, but instead of creating them in this class,
you’ll fill them in later—that way you can reuse your NSDateFormatter.

Perfect. Whenever you call configure(date:distance:duration:), you’ll automatically
put the data into your UI. That raises the next question: when does that
happen? Let’s look at the other side of this and get some data into your table.

Configuring the Content in Tables
Now that you’ve squared away how your row controller is going to behave,
you can use it in your RunLogInterfaceController. Unlike UITableView from UIKit,
where you’d return the number of rows from a data source method and then
configure each row on demand, you’ll set the number of rows manually and
then iterate through them and configure them as you go. You’ll also configure
your NSFormatter subclasses to do formatting and then pass them to each row
controller. You’ll get everything set up in the interface controller’s willActivate()
method. First, however, you need the data to put in the rows. Add a new Swift
file to your WatchKit extension, and name it Run.swift. In it, create a new class
with some properties for a run:

Chapter 5/TapALap/TapALap WatchKit Extension/Run.swift

class Run {

let distance: Double // in meters
let laps: [NSTimeInterval]
let startDate: NSDate

init(distance: Double, laps: [NSTimeInterval], startDate: NSDate) {
self.distance = distance
self.laps = laps
self.startDate = startDate

}

}

• Click HERE to purchase this book now. discuss

Configuring the Content in Tables • 9

http://media.pragprog.com/titles/jkwatch2/code/Chapter 6/TapALap/TapALap WatchKit Extension/RunLogRowController.swift
http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/Run.swift
http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

Joe asks:

Why Do We Need to Reuse Date Formatters?
Creating a date formatter, according to Apple’s Data Formatting Guide, “is not a cheap
operation.”a If we were to create a new date formatter for every row in the table, we’d
be sitting here for a long time waiting for a table of any reasonable length to display.
Speed is the name of the game with tables (see Performance Concerns, on page ?,
for more), so we want our code to be as efficient as possible.

a. From Apple’s Data Formatting Guide at developer.apple.com/library/prerelease/watchos/
documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/
doc/uid/TP40002369-SW10.

You could have made Run a struct instead, but you’ll be using it for some
class-only functionality in the future, so marking it as a class now avoids
future headaches. Now that you have the class to store the data, head back
to RunLogInterfaceController.swift and add an array of runs to display:

Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift

var runs: [Run]?

Before you can add rows to the table, you need a way to reference it. Open
the storyboard and the Assistant Editor, and then connect the table in your
Run Log interface controller to a new @IBOutlet property called runTable:

Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift

@IBOutlet weak var runTable: WKInterfaceTable!

Connecting the @IBOutlet is especially easy using the Assistant Editor; simply
click the circle to the left of its declaration; then drag to the table in your UI,
just as in this image:

• 10

• Click HERE to purchase this book now. discuss

https://developer.apple.com/library/prerelease/watchos/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW10
https://developer.apple.com/library/prerelease/watchos/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW10
https://developer.apple.com/library/prerelease/watchos/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW10
http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift
http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift
http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

You’re now ready to display run data in the table. In the interface controller’s
willActivate() method, you’ll iterate over the runs array:

Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift

override func willActivate() {Line 1

super.willActivate()-

-

guard let runs = runs else { return }-

5

runTable.setNumberOfRows(runs.count, withRowType: "RunRow")-

-

for i in 0 ..< runTable.numberOfRows {-

guard let rowController = runTable.rowControllerAtIndex(i)-

as? RunLogRowController else { continue }10

-

configureRow(rowController, forRun: runs[i])-

}-

}-

You get started with the table on line 6, when you set the number of rows to
the number of runs in your runs array. Then you get to a for loop on line 8,
and this is where the real fun begins. The table tells you how many row con-
trollers it created with its numberOfRows() method, so you can loop through
them. Inside each loop, you call the table’s rowControllerAtIndex() method to get
the row controller it’s created for the row, and then you can modify it—but
before you can use it, you need to make sure it’s the right class, because
rowControllerAtIndex() returns AnyObject?.

To do that, you’ll create a method called configureRow(_:forRun:). In that method,
you simply pass in your formatters and the proper Run instance, and the code
you wrote in the section on row configuration, on page 9, runs to configure
the row. Here’s what the method should look like:

Chapter 6/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift

func configureRow(rowController: RunLogRowController, forRun run: Run) {
rowController.dateFormatter = dateFormatter
rowController.distanceFormatter = distanceFormatter
rowController.durationFormatter = durationFormatter

rowController.configure(date: run.startDate,
distance: run.distance,
duration: run.duration)

}

That method was easy. If you try to build, you’ll notice that you never declared
the formatters, so let’s do that now. You don’t need them to be created until
you actually use them, so lazy variables in Swift are a perfect match. Head
up to the class extension and add some declarations for them:

• Click HERE to purchase this book now. discuss

Configuring the Content in Tables • 11

http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift
http://media.pragprog.com/titles/jkwatch2/code/Chapter 6/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift
http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift

lazy var dateFormatter: NSDateFormatter = {
let dateFormatter = NSDateFormatter()
dateFormatter.dateStyle = .ShortStyle
return dateFormatter

}()

lazy var distanceFormatter = NSLengthFormatter()

lazy var durationFormatter: NSDateComponentsFormatter = {
let dateComponentsFormatter = NSDateComponentsFormatter()
dateComponentsFormatter.unitsStyle = .Positional
return dateComponentsFormatter

}()

Now that you’ve declared them, you can use them whenever they’re needed,
and because they’re marked lazy, they’ll be initialized the first time they’re
used. Note that two of them need more customization, so wrap the customiza-
tions in a closure, using its return value as the initialized value of the property.
Next, you need a duration property for the Run class, which you can create as
a computed property. The duration of the run is the same as the sum of all
of its laps, so you can use Swift’s reduce() method to add them:

Chapter 5/TapALap/TapALap WatchKit Extension/Run.swift

var duration: NSTimeInterval {
return laps.reduce(0, combine: +)

}

You’re finished! Build and run the app, and the content of your runs array will
be displayed in the run log. Only there isn’t anything in that array. For now,
you can add some test data:

Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift

override init() {
srand48(time(UnsafeMutablePointer<time_t>(bitPattern: 0)))

let randomRun: (NSDate) -> Run = { date in
let lapCount = arc4random_uniform(20) + 5
let lapDistance = arc4random_uniform(1000) + 1

var laps: [NSTimeInterval] = []

for _ in 0 ..< lapCount {
// Pace is in m/s. 9 minutes per mile is about 3 meters per second.
// Generate a random pace between ~7.5 min/mi and ~10.5 min/mi.
let speed = 3.0 + (drand48() - 0.5) // in meters per second
let lapDuration: NSTimeInterval = Double(lapDistance) / speed

laps.append(lapDuration)
}

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift
http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/Run.swift
http://media.pragprog.com/titles/jkwatch2/code/Chapter 5/TapALap/TapALap WatchKit Extension/RunLogInterfaceController.swift
http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

let run = Run(distance: Double(lapDistance * lapCount),
laps: laps,
startDate: date)

return run
}

runs = []

for i in 0 ..< 5 {
runs?.append(randomRun(NSDate().dateByAddingTimeInterval(Double(i)

* 24 * 60 * 60)))
}

}

For real this time, you can display data. Build
and run one more time and you’ll see some-
thing like this:

As you can see, getting your data into the
table is pretty straightforward. If you needed
to use multiple types of rows with different
row controllers, you’d use the table’s setRow-
Types() method instead of setNumberOfRows(_:with-
RowType:). To use that method, simply create
an array of strings, one for each row in the
table, set to the row type identifier. If you do
that, keep in mind that the row controller
class you get back from your table’s rowCon-
trollerAtIndex() method will depend on that
identifier! In your willActivate() you can assume you’re getting a RunLogRowController,
but in more complicated table layouts you won’t be so lucky.

Another reason this code is so straightforward is that you have static content.
You create the table in the storyboard and set the number of rows in your
interface controller’s code, and then you’re finished with it. The watch takes
care of scrolling for you, and everything is smooth as butter. If you need to
modify the contents of the table, things get a bit trickier.

• Click HERE to purchase this book now. discuss

Configuring the Content in Tables • 13

http://pragprog.com/titles/jkwatch2
http://forums.pragprog.com/forums/jkwatch2

