
Extracted from:

Test-Drive ASP.NET MVC

This PDF file contains pages extracted from Test-Drive ASP.NET MVC, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Simplicity is the ultimate sophistication.

Leonardo da Vinci

Chapter 3

Getting Organized with MVC
Now that we understand TDD and the basics of MVC, we can start

implementing the sample time management application we’ll create

throughout Parts II and III of the book: GetOrganized. This applica-

tion will improve the speed and priority of how we get things done—it

will help us get organized.

The first few chapters of Part II focus on how to use and test MVC

controllers; the following chapters work through how to make the site

look better using views and Ajax.

This chapter starts with an overview of what we’ll be doing with GetOr-

ganized in the upcoming chapters, and then we’ll dive into test-driving

MVC’s create, read, update, and delete (CRUD) operations to create a

simple to-do list.

3.1 Time Management with GetOrganized

GetOrganized is a web-based time management system inspired by

ThinkingRock, an open source Java Swing application developed by

Jeremy Moore. It helps you organize your thoughts and set up action

items.1 Both GetOrganized and ThinkingRock draw their inspiration

from time management guru David Allen’s book Getting Things Done

[All02].

ThinkingRock’s main screen illustrates the three steps of a Getting

Things Done system (Figure 3.1, on the next page).

1. http://www.trgtd.com.au/

http://www.trgtd.com.au/

TIME MANAGEMENT WITH GETORGANIZED 46

Figure 3.1: ThinkingRock helps you manage time with a three-step pro-

cess: collect thoughts, process them, and implement actions.

1. Write down all the thoughts that are on your mind.

2. Process those thoughts, by either throwing them away or turning

them into an action item.

3. Prioritize and complete the action items.

For the system to yield results, you commit a time every day and input

your thoughts. These can be random and should have no concept of

size, such as “Complete proposal for prospective client” or “Learn

jQuery.” Next, you categorize these thoughts into actionable or non-

actionable items. Finally, you work through those action items in the

form of a to-do list.

Let’s get started by adding support for building a simple to-do list so

that we can see all the things we need to work on.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

READING DATA 47

3.2 Reading Data

Often the hardest thing to do when starting with TDD is to write the

first test. This is especially true when a language or framework is new

to us; the old pattern of writing the functional code first slips back, and

before we know it, we’re writing code with zero test coverage. TDD takes

discipline, but we end up learning more and building greater confidence

as we master it.

In the case of ASP.NET MVC, a good place to start is to test-drive the

controller, because it’s where so much of the application logic lives.

Alternatively, you can start by test-driving your model, which we will

do in Section 4.1, Implementing Equals for Topic, on page 75. In the

end, you’ll need to test both models and controllers independently.

Before we can start testing our controller, we need to create the MVC

project GetOrganized.

MVC Project Structure

We installed MVC in Section 1.2, Installing MVC, on page 23, and this

step is required before we can create a new MVC project. Once installed,

we’ll be able to create the solution GetOrganized with the MVC project

name Web.

Although the project name Web is generic, you’ll want to keep the

project names simple to save screen real estate in the Visual Studio

Solution Explorer. However, you’ll want to modify the project properties

to add a custom namespace by right-clicking the project properties.

Then change the default namespace to GetOrganized.Web.

This is the first time we’re looking at the project structure of an MVC

project, so let’s take a quick tour (Figure 3.2, on the following page).

By default Visual Studio generates an AccountController and HomeCon-

troller. You can remove and replace these with your own code, but they

give us a starting point for most web applications. The AccountController

deals with user login, and the HomeController serves up the default MVC

starter page. We’ll touch more on the AccountController in Section 5.2,

Logging In, on page 102.

Here’s the rest of the structure:

• Content holds all images, CSS, and other static files.

• Controllers holds all your controller classes.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

READING DATA 48

Images, CSS
and other static

files

JavaScript
(jQuery and

Microsoft Ajax)

URL Routing
and

Configuration

Figure 3.2: The MVC project structure has a well-defined location for

all files.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

READING DATA 49

Figure 3.3: Adding a reference to NUnit is required in order to unit test.

• Models holds all your model classes.

• Views holds a subdirectory for each controller you create as well as

a Shared folder for common components.

• Scripts has all a copy of jQuery and Microsoft Ajax support or any

other JavaScript you create.

• Global.asax includes the routing and startup information for your

application.

Our First Test

Let’s get on with the business of writing our first controller test.

When creating tests, we generally create a new project, which produces

a separate .NET assembly. We place our tests in that project so that test

code never goes into production. We’ll follow this convention by creating

a project of the type Class Library, and we’ll name it Test.Unit. Once it’s

created, make sure to add a reference to nunit.framework.dll, as shown in

Figure 3.3.

This controller “should display a list of some to-do items.” Hey, that

sounds like a pretty good name for a test!

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

READING DATA 50

ReSharper Tip: Class Navigation

By naming all our test classes with the name Test at the end,
rather than the start, it makes it easier to find the associated
functional code with the test code. ReSharper has the code
navigation shortcut Ctrl+N that helps us find classes in the solu-
tion. When we type in TodoController, it will bring up the actual
controller as well as the test, TodoControllerTest. ReSharper’s
code navigation allows an even shorter form by just typing in
TC to bring us the same result.

To start, we need to add a test class, TodoControllerTest:

Download gettingorganized/TodoControllerTest.cs

using NUnit.Framework;

namespace Test.Unit

{

[TestFixture]

public class TodoControllerTest

{

[Test]

public void Should_Display_A_List_Of_Todo_Items()

{

}

}

}

We have our test skeleton, similar to what we did in Section 2.2, Test-

Driving “Hello World”, on page 38. Now we’ll fill it with an assertion.

The controller should display to-dos, so our assertion needs to verify

that to-do items load. However, this will generate a couple of compiler

errors, since neither a Todo class nor a TodoController exists. Let’s work

on creating these classes first before we return to this test, starting by

creating a Todo model.

A model is a normal class. There are no special templates or wizards

like there are for views and controllers. To create a new model, right-

click the Solution Explorer, choose Add New Item, and select the Class

template.

An alternative way to solve our compiler problem would be to generate

the classes with ReSharper. While our mouse is over the compiler error

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://www.pragprog.com/titles/jmasp

READING DATA 51

ReSharper Tip: Creating New Classes

While your mouse is over the Solution Explorer, hit Ctrl+Alt+Ins ,
and you’ll be able to create and name a new class.

on Todo on line 5, we can use the ReSharper shortcut Alt+Enter to

generate our missing Todo class (see the sidebar on page 59). This also

works for controllers, but we don’t get the generated template that MVC

gives us.

For this new model, start by adding two properties, Title and Completed,

and then add a default list of things to be done. This gives us a primitive

way of saving our list. Static lists are never a good way to store informa-

tion in real-world applications. We’ll eventually replace the static lists

in Chapter 8, Persisting Your Models, on page 174 when we introduce

NHibernate.

Testing models is critical because they’ll eventually hold important logic

about how your system behaves. Since we’re currently focusing on con-

troller testing, let’s deal with model testing a little later.

Download gettingorganized/Todo.cs

Line 1 namespace GetOrganized.Models
- {
- public class Todo
- {
5 public static List<Todo> ThingsToBeDone = new List<Todo>
- {
- new Todo {Title = "Get Milk", Completed = false},
- new Todo {Title = "Bring Home Bacon", Completed = false}
- };

10

- public bool Completed { get; set; }
- public string Title { get; set; }
- }
- }

Our first model has a List<Todo> and a couple of auto properties. Auto

setters are a new C# 3.0 feature to reduce the amount of code required

to have simple getters and setters. Instead of writing out public bool

Completed {get {return completed;} } and then having to create the private

boolean field completed, the auto setter property is shorter, as shown on

line 11.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jmasp/code/gettingorganized/Todo.cs
http://www.pragprog.com/titles/jmasp

READING DATA 52

Figure 3.4: There will be classes that don’t exist as you write your tests.

This is a normal part of TDD.

With the model in place, we’ve removed one of the compiler errors. How-

ever, we’re still getting another one because there is no such thing as

TodoController (Figure 3.4). Not to worry, this is a regular part of practic-

ing TDD. You’ll find yourself regularly inventing new classes to satisfy

what you’re testing. Eventually, you’ll get to the point of a compiling

and failing test.

To remove the compiler error, we’ll create the TodoController. Creating a

controller involves right-clicking the Controller folder, selecting Add Con-

troller, and inputting the name of the controller. Make sure to check the

“Add action methods for Create, Update, Delete, and Details Scenarios”

box, because we’ll use these stubs later. The code generated for the

TodoController looks like this:

Download gettingorganized/TodoController.cs

Line 1 namespace GetOrganized.Controllers
- {
- public class TodoController : Controller
- {
5 //
- // GET: /Todo/
-

- public ActionResult Index()
- {

10 return View();
- }
- }
- }

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://www.pragprog.com/titles/jmasp

READING DATA 53

Figure 3.5: Should_Display_A_List_of_Todo_Items() is failing because the

Index() action isn’t meeting our expectations.

The helpful code comment on line 6 tells us that when we type in the

URL http://localhost/Todo, we get the method that we’re after. Note that

Index() has a default route. The URL http://localhost/Todo/Index is equiv-

alent to http://localhost/Todo, because this is specified in Global.asax.cs.

Notice that the return value on the controller methods is an ActionRe-

sult object. Views use these objects for rendering purposes, but most

important, they contain the model that we will attach to get this test

to pass. ActionResults are covered in detail in Section 5.1, Directing to

Different Content Types with ActionResults, on page 98.

To complete our assert statement, we’ll need to compare apples to

apples, or in this case to lists of Todo items. To achieve this, we need to

cast ActionResult as a ViewResult object. The ViewResult class is a subtype

of ActionResult that has a property called ViewData; this property is the

key to passing the model between the controller and the view.

ViewData is a collection of objects. It has a special property called Model,

which is where the model is set and accessed in the controller. We’re

expecting our controller to set our ViewData.Model to be our Todo list.

For the code to compile, we’ll need to add System.Web.Mvc to our refer-

ences in the Test.Unit project. The code looks like this:

Download gettingorganized/TodoControllerTest.cs

Line 1 [Test]
2 public void Should_Display_A_List_Of_Todo_Items()
3 {
4 var viewResult = (ViewResult) new TodoController().Index() ;
5 Assert.AreEqual(Todo.ThingsToBeDone, viewResult.ViewData.Model);
6 }

CLICK HERE to purchase this book now.

http://localhost/Todo
http://localhost/Todo/Index
http://localhost/Todo
http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoControllerTest.cs
http://www.pragprog.com/titles/jmasp

READING DATA 54

Figure 3.6: Adding the model to the controller makes our test pass.

Our code is compiling, and it’s time to run the test and see whether it

fails. Our comparison is failing when we run the test (Figure 3.5, on the

preceding page). This means we’ve reached step 2 of the TDD cycle—

“Watch the test fail” (Figure 2.2, on page 36). To reach step 3—“Get the

test to pass”—we’ll need to implement the Index() action to meet our

assertion.

Currently our Index() action simply returns a ViewResult and therefore

will fail. Let’s wire up the model and get the test to pass (Figure 3.6):

Download gettingorganized/TodoController.cs

public class TodoController : Controller

{

//

// GET: /Todo/

public ActionResult Index()

{

ViewData.Model = Todo.ThingsToBeDone;

return View();

}

}

Adding a View

Excellent, we’ve got our first passing test. But we still don’t have any-

thing the user can see. We need to add a view to complete the cycle.

Adding a view is similar to the process of adding a controller. Sim-

ply right-click anywhere in the controller’s action code, and select Add

View (Figure 3.7, on page 56). We’ll create a strongly typed view with

the template called List to generate the HTML that lists the List<Todo>

for us. The bottom of the dialog box is where we can specify the use of

a master page, which is a layout template for the whole site (we’ll cover

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jmasp/code/gettingorganized/TodoController.cs
http://www.pragprog.com/titles/jmasp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Test-Drive ASP.NET MVC

http://pragprog.com/titles/jmasp

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jmasp.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/jmasp
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jmasp
www.pragprog.com/catalog

