
Extracted from:

Test-Drive ASP.NET MVC

This PDF file contains pages extracted from Test-Drive ASP.NET MVC, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

If at first the idea is not absurd, then there is no hope for it.

Albert Einstein

Preface
It’s testable. It’s lightweight. It’s open source. It’s . . . Microsoft? Yes,

ASP.NET MVC is an open source web application framework created by

Microsoft to cater to the needs of agile software developers. Since its

official release in early 2009, it has been downloaded by almost 1 mil-

lion developers, and it is rapidly being adopted by many organizations

because of its efficient development model. Simply put, it’s C# on the

Web done right.

With this book’s test-driven approach to ASP.NET MVC, you’ll gain the

cutting-edge skills to build your next web application and become a

more agile developer in the process.

What Makes ASP.NET MVC Special?

Microsoft offers two web presentation frameworks: ASP.NET Web Forms

and ASP.NET MVC. ASP.NET itself is the common set of libraries and

features that both ASP.NET Web Forms and ASP.NET MVC work on top

of. This supports customers’ existing needs with the older ASP.NET

Web Forms and their future needs with ASP.NET MVC. Although

ASP.NET MVC shares many of the same underpinnings of ASP.NET, it

overcomes its brother’s weaknesses. ASP.NET MVC was designed using

the latest innovations and lessons learned on how to build web appli-

cations. This adds up to big productivity improvements for your teams.

Here’s what ASP.NET MVC offers that ASP.NET Web Forms doesn’t.

Full Control Over Markup

If you’ve ever developed an ASP.NET Web Forms website, you’ll know

what a struggle it is to build a site for anything other than Internet

Explorer. This is partly because ASP.NET Web Forms was designed

for intranet applications where a single browser could be more easily

mandated. For most companies, supporting only one browser isn’t an

WHAT MAKES ASP.NET MVC SPECIAL? 13

option anymore. Many companies are focusing on enabling their part-

ners and customers to perform their work through web applications, so

they need to support multiple browsers.

The Achilles’ heel of ASP.NET Web Forms is its bloated HTML. It gen-

erates complex markup through a string of embedded web and user

controls. ASP.NET MVC comes to the rescue with a much simpler solu-

tion. Its default view engine, which is confusingly named the Web Forms

view engine, gives you full control over your markup. No more strange

id tags with $ and underscores in them. This pays off when dealing with

client-side scripting such as JavaScript. You’ll find out more about the

Web Forms view engine in Chapter 7, Composing Views with Ajax and

Partials, on page 153.

Testability

A web application framework that has out-of-the-box testing saves you

a lot of time. Most developers building ASP.NET Web Forms applications

had to use their own design patterns, such as Model-View-Presenter

(MVP), to accomplish this. For developers who don’t know much about

unit testing, it’s less obvious how to approach testing. ASP.NET MVC

solves this with a clear way to test your code. I’ll be focusing on this

point heavily throughout the book to walk you through how to write a

well-tested ASP.NET MVC application.

Convention Over Configuration

Following convention saves time. ASP.NET MVC’s timesaving conven-

tions keep you out of configuration files, and some conventions give

you added benefits, such as search engine optimization. For exam-

ple, in ASP.NET MVC, URLs to your site become more readable by

engines. Instead of http://yourblog.com/Blog/Entry.aspx?id=108 in ASP.NET

Web Forms, ASP.NET MVC can do much better, such as http://yourblog.

com/Blog/Entry/108/MVC-Makes-Search-Engines-Happy. You can achieve

the same thing with ASP.NET Web Forms, but it’s less straightforward.1

With ASP.NET MVC, you get it for free. You’ll see more of these conven-

tions throughout Part II, “Building an Application.”

Extensible Architecture

Striking a balance between conventions and extensibility is tricky for

web frameworks. If too many conventions are prescribed, they can

1. http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx

CLICK HERE to purchase this book now.

http://yourblog.com/Blog/Entry.aspx?id=108
http://yourblog.com/Blog/Entry/108/MVC-Makes-Search-Engines-Happy
http://yourblog.com/Blog/Entry/108/MVC-Makes-Search-Engines-Happy
http://weblogs.asp.net/scottgu/archive/2009/10/13/url-routing-with-asp-net-4-web-forms-vs-2010-and-net-4-0-series.aspx
http://www.pragprog.com/titles/jmasp

WHY TEST -DRIVEN DEVELOPMENT? 14

restrict you from extending the framework when you need to do so.

The opposite is also true: if no conventions are set, then your team has

to continue to reinvent the wheel.

ASP.NET MVC strikes a pretty good balance. It comes with a powerful

default view engine but makes it easy to extend or create your own.

You’ll learn about this in Section 6.2, Building a Custom HTML Helper,

on page 137. ASP.NET MVC has a feature called action filters that you

can extend to provide helpful features such as transaction support.

You’ll tackle this in Section 9.4, Creating a Custom Action Filter, on

page 202. Because ASP.NET MVC’s architecture has a single point of

creation for all the controllers, you can extend it with dependency injec-

tion. Dependency injection decouples object behaviors, or, more specif-

ically, the implementation of those behaviors. We pass the behavior to

the constructor, effectively “injecting” it into the object. You’ll see how

to do this in Section 5.1, IControllerFactory: Where Controllers Are Born,

on page 100.

Finally, ASP.NET MVC isn’t tied to any single persistence framework

(see the Joe Asks. . . on page 21 for more on persistence frameworks).

In fact, it doesn’t come bundled with one at all. This leaves room for

you to choose the right tool for the job. In this book, you’ll be using

NHibernate, one of the most popular open source persistence frame-

works. You’ll see how to use NHibernate in Chapter 8, Persisting Your

Models, on page 174.

Why Test-Driven Development?

Test-driven development (TDD) is a simple programming technique that

drives your development by starting with a failing unit test. It’s quickly

becoming a standard practice on projects because TDD helps you feel

more confident about your code. If you’ve never used TDD before, then

Chapter 2, Test-Driven Development, on page 33 will show you how.

With TDD, you’ll spend much more time coding and much less time

fiddling around with the debugger.

The other key advantage to this method is that it helps you learn a

framework faster. Tests, when they pass, confirm that you’ve written

a bit of code correctly, and you can even dig into the tests that the

framework offers. Because ASP.NET MVC is open source, you’re free to

browse all of its unit tests to help you gain an even better understand-

ing of it.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

WHO SHOULD READ THIS BOOK? 15

And if you’re a seasoned test-driven developer who’s embarking on

learning ASP.NET MVC, this book will be your guide on how and what

to test.

Who Should Read This Book?

This book was written for two audiences: Microsoft developers and

non-Microsoft developers. The goal for both is the same: to learn how

to build an ASP.NET MVC application based on development best

practices.

For Microsoft developers with a long history of building applications

using Microsoft frameworks, the emphasis on TDD might be unfamiliar

to you. Almost all the code examples in this book have been written

with TDD and are explained so that you can understand both how the

tests work and how the ASP.NET MVC code works. Also, you’ll learn

about some tools and open source projects that can save you time when

developing your ASP.NET MVC applications.

For non-Microsoft developers, you’ll find the methods of testing famil-

iar, but learning the language and the framework will be your primary

focus. Although this book assumes a basic knowledge of the C# lan-

guage, each tutorial explains line by line what the code is doing and

why it is important.

Although you can develop VB .NET web applications with ASP.NET

MVC, all the samples in this book are written in C#. If you’re comfort-

able reading C# and translating for yourself, then you’ll be fine using

this book as your guide to ASP.NET MVC.

What’s in This Book?

Part I of this book shows you how to build an ASP.NET MVC application

and introduces you to the TDD approach.

Part II focuses on building a sample application. You will work through

test-driving core components of ASP.NET MVC, as well as other essen-

tial frameworks that integrate with it. In Chapter 7, Composing Views

with Ajax and Partials, on page 153, you will focus on working with

jQuery.

Part III builds on the same application but introduces how to work with

other frameworks. The database access in ASP.NET MVC is flexible, and

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

WHAT’S NEW IN ASP.NET MVC 2.0? 16

you’ll find out about NHibernate in Chapter 8, Persisting Your Models,

on page 174. Also, you’ll learn how to use the Castle Windsor container

in Chapter 9, Integrating Repositories with Controllers, on page 190. To

integrate with other applications, you’ll also learn how to create Repre-

sentational State Transfer (REST) web services in Chapter 10, Building

RESTful Web Services, on page 212.

Part IV focuses on deployment, something that many of us struggle

with. Chapter 12, Build and Deployment, on page 249 is dedicated

to this subject. You’ll also learn about nonfunctional requirements in

Chapter 11, Security, Error Handling, and Logging, on page 231.

To get the most out of this book, it’s highly recommended that you code

through the problems while reading. Not only will this help you learn

the concepts of the framework and experience the subtle differences in

each test, but, more important, you’ll master the test-driven discipline.

This is a skill you’ll take with you to every language you program in.

Whether you are programming in C#, Java, or Ruby, knowing how to

write tests will help you write high-quality code in shorter periods of

time.

What’s New in ASP.NET MVC 2.0?

Since version 1.0 of ASP.NET MVC was released in March 2009, the

development team in Redmond has been working tirelessly at improv-

ing the framework in the 2.0 release. More evolutionary than revolu-

tionary, these changes make view and model development easier. Let’s

talk quickly about the new features.

Strongly Typed HTML Helpers

These new helpers reduce errors at compile time as well as the number

of lines of code in your views. The helper methods are an improve-

ment over checking properties at runtime. For example, we’d do this in

ASP.NET MVC 1.0 to render a textbox for a person:

Html.TextBox("Name");

This standard Html helper renders a textbox. It’s linked to the Name

property of the model so that when it’s filled out, the model itself is

updated. In ASP.NET MVC 2.0, you do it like this:

Html.EditorFor(person => person.Name);

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

WHAT’S NEW IN ASP.NET MVC 2.0? 17

Here the EditorFor() renders a textbox for the Person model and checks

for the presence of the Name property at compile time. Compile-time

checking alerts you early to typos that break your code. It also helps if

you rename properties of models that are referenced in views.

Html.EditorFor<Person>(person => person);

EditorFor() can also check for all the properties of the Person and render

them all for editing. In this case, the lambda expression we pass is the

whole model, not just a single property. You’ll get to use the DisplayFor()

helper methods in Section 1.3, MVC in Five Minutes: Building Quote-O-

Matic, on page 26.

Templated Views

Templated views build on what strongly typed view helpers allow us to

do. With ASP.NET MVC 2.0, you can now create generic view templates

that let you postpone customizing views. This works well for prototyping

applications, such as when your pages need just enough information

to get feedback from your customer to know whether you’re on the

right track. Building your own templates is as simple as creating a

view under the View/Shared directory named after the controller’s action.

Instead of creating a view per model to show or create details, ASP.NET

MVC can fall back on your templated views. You’ll look at this feature

in Section 4.3, Adding Thoughts with Templated Views, on page 85.

Data Annotations

Data annotations are a way to mark up your models with validation

rules. For example, if you wanted to make sure that a user’s name was

no longer than twenty-five characters, you could add this attribute:

[StringLength(25, ErrorMessage="Invalid Length")]

public string Name {get; set;}

The attribute StringLength specifies a length of a maximum of twenty-

five, and the ErrorMessage value will be the message you display to the

user if they input a name that is too long or short. You’ll see more of

this in Section 6.4, Adding Validations Using ModelStateDictionary, on

page 145.

Other Features

Areas, asynchronous controllers, and Html.RenderAction() are other use-

ful new features in ASP.NET MVC 2.0. Because they’re more advanced

or specialized, they won’t be covered in this book. Areas extend the way

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jmasp

ONLINE RESOURCES 18

files are organized in an ASP.NET MVC project and are aimed at larger

web applications (see Phil Haack’s blog2 for a tutorial on how to use

them). Asynchronous controllers are for long-running tasks that can

be run in parallel. Finally, Html.RenderAction() provides a more efficient

way for HTML to be written to the response.

Online Resources

At the website for this book, http://pragprog.com/titles/jmasp, you’ll find

the following:

• You’ll find the source code for all the snippets used in this book,

including the full codebase for the sample application from Parts

II and III. You can find the final solution in the GetOrganizedFinal

folder when you unzip it.

• You’ll find an errata page, where you can post errors you find in

the current edition.

• You’ll find a discussion forum where you can communicate with

me and other ASP.NET MVC developers directly.

In addition, once you get to the end of the book, Section 12.3, That’s

All, Folks, on page 269 will give you some additional online resources

to sites where you can further your learning.

Feel free to use the source code in your own applications. However,

keep in mind that not all the examples in the book are fit for production

code, because some are there to help you learn only. If you’re reading

the ebook version of this book, you can download and play with the

code by clicking the little gray rectangle before the code listings.

Let’s get started with a high-level overview in Chapter 1, Getting Started

with ASP.NET MVC, on page 20, where we’ll build a simple web applica-

tion. Following that, in Chapter 2, Test-Driven Development, on page 33,

we’ll learn the basics of this more efficient form of development. With

that knowledge, we’ll be able to tackle building a full-featured end-to-

end sample application for the rest of the book.

2. http://haacked.com/archive/2010/01/12/ambiguous-controller-names.aspx

CLICK HERE to purchase this book now.

http://pragprog.com/titles/jmasp
http://haacked.com/archive/2010/01/12/ambiguous-controller-names.aspx
http://www.pragprog.com/titles/jmasp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Test-Drive ASP.NET MVC

http://pragprog.com/titles/jmasp

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jmasp.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/jmasp
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jmasp
www.pragprog.com/catalog

