Extracted from:

Test i0OS Apps with Ul Automation

Bug Hunting Made Easy

This PDF file contains pages extracted from Test iOS Apps with UI Automation,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina


http://www.pragprog.com

Th
Pra ematic
ogrammers

Test iOS Apps with
Ul Automation
Bug Hunting Made Easy

Jonathan Penn
Edited by Brian P. Hogan




Test iOS Apps with Ul Automation

Bug Hunting Made Easy

Jonathan Penn

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)

Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-52-9

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—August 2013


http://pragprog.com

5.2

Identifying Elements with Accessibility APIs

Our test works fine for the moment, but we have a fragile situation on our
hands. As we see in Figure 26, Finding the map pins in the window, on page
2, the pin annotation views are represented as just plain UIAElement instances.
Although we're able to use the special filtering methods such as buttons() and
cells() to fetch only elements of a certain type, we don’t have that convenience

here. We have to use the generic elements() method.

This could be a problem if we were testing for a pin with the name Legal, for
instance, because the static text element for the Map Kit legal disclaimer has
that name and is a sibling in the element array, along with all our pins. This
could give us a false positive in a test. We need a better way to uniquely
identify our pins.

To address this, we're going to experiment with the accessibility APIs to
understand how Ul Automation sees UlAElement instances. We'll be jumping
back and forth between Objective-C and JavaScript a bit, but it will pay off
because we’ll have a much more reliable way to distinguish our pins from the
other elements on the screen.

The accessibility APIs are the basis for technologies like VoiceOver that give
visually impaired users a better experience. You can specify traits to identify
elements as buttons, search fields, adjustable controls, or anything else that
a user would need to manipulate on the screen.

We will use the accessibility APIs to define identifiers for our test’s use that
are separate from what the user can see and hear. By conforming to the
UlAccessibilityldentification informal protocol, any UlView subclass can change the
value of the name() method on its UIAElement representation. This protocol is
informal because we don’t have to declare it in the Objective-C class interface.
We merely have to define a method with the name accessibilityldentifier in a
subclass.

Since Map Kit gives us full control over the annotation views that appear over
the map, we can use a custom subclass of MKPinAnnotationView. Let’s switch back
to Xcode and change our map results view controller so it returns our
subclass:

05-MapsGestures/step03/NearbyMe/NBMMapResultsViewController.m
- (MKAnnotationView *)mapView: (MKMapView *)mapView
viewForAnnotation: (id<MKAnnotation>)annotation

if ([annotation isKindOfClass:[MKUserLocation class]]) {
return nil;

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/jptios/code/05-MapsGestures/step03/NearbyMe/NBMMapResultsViewController.m
http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

*6

} else {
MKPinAnnotationView *view = [[NBMAccessibleAnnotationView alloc]
initWithAnnotation:annotation
reuseldentifier:nil];

view.canShowCallout = YES;
view.animatesDrop = YES;
return view;

}

As the delegate of the map view, this view controller will be asked for an
annotation view for every annotation on the map. We first check to see if the
given annotation represents the user’s current location. If it does, we're just
returning nil so the Map Kit framework can handle it the way it normally does,
with the blue pulsating dot. If this isn’t a user-location annotation, then we
create an instance of our custom subclass, NBMAccessibleAnnotationView, and
return it instead.

In our custom annotation view we return a new string for the accessibilityldenti-
fier:

05-MapsGestures/step03/NearbyMe/NBMAccessibleAnnotationView.m
@implementation NBMAccessibleAnnotationView

- (NSString *)accessibilityIdentifier

{

NBMPointOfInterest *poi = self.annotation;

return [NSString stringWithFormat:@"POI: %@", poi.titlel;
}
@end

We use the annotation that belongs to this annotation view and return a
string of the annotation title prefixed with POl:.. Remember that the accessibil-
ity identifier is not visible or audible to the user. We can put whatever we
want in here to distinguish our elements.

We need to rebuild our application and load it in Instruments so our
automation scripts can see this change. Choose Profile from the Product menu
in Xcode or press -1, and the app will build and open in the Instruments
trace document.

In the Ul Automation script editor, let’s write a quick script in our sandbox
file that takes us to the map screen and logs the element tree so we can see
what changed:

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/jptios/code/05-MapsGestures/step03/NearbyMe/NBMAccessibleAnnotationView.m
http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

Identifying Elements with Accessibility APIs * 7

05-MapsGestures/step03/automation/sandbox.js

#import "env.js";

var target

UIATarget.localTarget();

var window = target.frontMostApp().mainWindow();
SearchTermScreen.tapTerm("coffee");

target.delay(5);

// Adjust to give network time to fetch

window.logElementTree();

We're tapping the search term and pausing for a moment so the network
request can complete before logging the element tree. When we run our
automation script by pressing 3-R twice to stop and restart the trace, we’ll
see output similar to what the following figure shows. This prefix gives us a
reasonable way to uniquely distinguish points of interest from other elements.

v UIAWindow: rect:{{0, 0}, {320, 480}}

» UIANavigationBar: name:coffee rect:{{0, 20}, {320, 44}}
UIAElement:
UlAElement:
UIAElement:
UlAElement:
UlAElement:
UIAElement:
UlAElement:
UIAElement:
UIAElement:
UlAElement:
UIAElement:
UlIAMapView: rect:{{0, 64}, {320, 372}}

UlAStaticText: name:Legal value:Legal rect:{{11, 416}, {24, 11}}

p» UlAToolbar: rect:{{0, 436}, {320, 44}}

name:POI: Peet's Coffee rect:{{302, 69}, {32, 391}

name:POIl: Peet's Coffee and Tea rect:{{216, 162}, {32, 39}}

name:POI: Starbucks Coffee rect:{{216, 173}, {32, 39}}

name:POIl: The Coffee Bean & Tea Leaf rect:{{166, 211}, {32, 39}

name:POIl: Chatz Coffee rect:{{252, 204}, {32, 39}}
name:POI: Tully's Coffee rect:{{278, 225}, {32, 39}}
name:Current Location rect:{{148, 238}, {23, 23}}
name:POIl: Emile's Coffee & Tea rect:{{5, 261}, {32, 39}
name:POI: HRD Coffee Shop rect:{{282, 286}, {32, 39}}

name:POIl: Rancho Parnassus Coffee rect:{{137, 301}, {32, 39}}

name:POI: Starbucks Coffee rect:{{266, 322}, {32, 39}}

Figure 27—Prefixing POI: to pin identifiers

We need to change how our ResultsMapScreen object works, because it doesn’t
know about the POI: prefix yet. Let’s do this by building a method specifically
for looking up pins by name on the map:

05-MapsGestures/step03/automation/lib/screens/ResultsMapScreen.js
pinNamed: function(name) {

log("Looking up", name, "on the map");

var elements = this.window().elements();

return elements["POI:

+ name];

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/jptios/code/05-MapsGestures/step03/automation/sandbox.js
http://media.pragprog.com/titles/jptios/code/05-MapsGestures/step03/automation/lib/screens/ResultsMapScreen.js
http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

*8

We're using simple string concatenation to add the prefix to the name passed
in to our assertion. Since the ResultsMapScreen object encapsulates all the logic
for looking up a point of interest by name, we can change the prefix of pin
identifiers again if we need to. As long as we’ve used our screen objects in all
the tests we write, we only have to make the update for the new pin identifiers
in this one file.

Now we can update our assertion to use the new method:

05-MapsGestures/step03/automation/lib/screens/ResultsMapScreen.js
assertPinNamed: function(name) {
assert(this.pinNamed(name).isValid(), "Not found");

}I

Run the whole test suite again to make sure nothing is broken; everything
passes!

The accessibility APIs are a powerful ally when working with automation
scripts. Changing the accessibilityldentifier on view objects is a great way to help
solve ambiguity. There are many more ways to use these APIs to your
advantage, such as by defining containers of elements for nonview objects
and hiding views from the element tree entirely. Adapting these representations
to your application improves the user experience and makes it easier to access
elements in your tests. Check Apple’s documentation for more information.'

Now that we've studied the map and how elements are represented, we're
ready to start writing our final acceptance test for this chapter and learning
a bit about simulated gestures along the way.

1. http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessi-

« Click HERE to purchase this book now. discuss


http://media.pragprog.com/titles/jptios/code/05-MapsGestures/step03/automation/lib/screens/ResultsMapScreen.js
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iPhoneAccessibility/Accessibility_on_iPhone/Accessibility_on_iPhone.html
http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios



