
Extracted from:

Test iOS Apps with UI Automation
Bug Hunting Made Easy

This PDF file contains pages extracted from Test iOS Apps with UI Automation,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Test iOS Apps with UI Automation
Bug Hunting Made Easy

Jonathan Penn

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-52-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2013

http://pragprog.com

Acknowledgments
First, I want to thank my inner circle of authors, who encouraged me to go
through the pain to write a book in the first place. Daniel Steinberg, Bill
Dudney, Joshua Smith, and Jason Gilmore—thank you. I would have been
lost without your example and your terrifying stories.

Thanks to all who submitted feedback and errata throughout the beta process,
and specifically those who slogged through the tech reviews and took the time
to write up the awesome feedback: Chris Adamson, Heath Borders, Jayme
Deffenbaugh, Jason Gilmore, Jeff Holland, Ben Lachman, Kurt Landrus,
Kevin Munc, Mark Norgren, Stephen Orr, Julián Romero, Shiney Rossi, Joshua
Smith, Daniel Steinberg, Conrad Stoll, Elizabeth Taylor, TJ Usiyan, and Alex
Vollmer.

Thanks to CocoaConf for giving me all those opportunities to practice the
material in this book—over and over.

Thanks to the team at The Pragmatic Programmers for the resources they
provided and for letting me prove myself. Special thanks to my editor, Brian
Hogan, for wisely convincing me to scrap the first draft of the book and for
fielding my incessant questions.

To my parents, who fed my famished curiosity. To my daughter, Niah, who
thinks I work at a coffee shop for a living. To my son, Ian, who thinks I know
what I want to do when I grow up. And to my partner, Colleen. She put up
with my swinging moods and sleepless nights and surely shed more sweat
than I did.

For great justice.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

Introduction
We iOS developers have a lot on our minds. We want to build useful and bug-
free software for our customers while keeping up with Apple’s fast pace.
Software development is fraught with trade-offs and, unfortunately, testing
our software is often traded away in the crunch time before a release date.

So what’s the best way to hunt for bugs in our apps? We spend a lot of our
own time manually launching and walking through the features one by one,
tapping, swiping…over and over again. This book helps us find a better way.

What Can We Do About It?

Nothing will replace the spot-checking ingenuity of a human tester, but we
can certainly automate the important common tasks and free ourselves up
to focus on other things. We want to use automated tests to raise confidence
while we keep forging ahead and to give us useful information when something
goes wrong.

In this book, we’re going to focus on testing by scripting interactions through
the user interface. This is known as full stack or integration testing in some
circles. We’re launching the whole app, tapping and gesturing, waiting for
animations, and reacting to results from the screen.

We’re going to be strategic with how we apply these tests. Automation testing
is a powerful way to smoke out bugs, but it’s not without its limitations. These
kinds of tests are slow and it’s not feasible to test every edge case using this
technique. We’re not going to cover effective lower-level testing strategies such
as unit tests—for more information about that, you’d want to read Graham
Lee’s book Test-Driven iOS Development [Lee12], or Daniel Steinberg’s book
Test Driving iOS Development With Kiwi [Ste12]. Here, we’re looking to test
deep slices of the application while answering the question "Did we wire the
components correctly?"

We have two ultimate goals with these tests. First, we want to verify correct
behavior with acceptance tests that list the steps a user would take and the

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

requirements to consider a feature complete. Second, we want to automate
the mundane tasks involved in performance testing. Looking for memory leaks
often involves walking through the app and doing the same thing over and
over again while recording benchmarks. This is a perfect use case for
automation.

Great, So How Do We Get There?

In these pages, we’ll be focusing on UI Automation, a tool Apple provides that
works out of the box and integrates with Xcode. We don’t need to install
anything to get started and try it out. It was first introduced in iOS 4 as part
of Instruments, a robust tool to trace application behavior at runtime. Along
with the rest of the instruments available to us, UI Automation gives us a lot
of power to assert proper behavior and run extensive performance analysis
through different usage scenarios.

Here’s where we’ll be going:

• Chapter 1, UI Automation Overview, on page ?, gets us started by walking
through how to capture and play back in the simulator actions we perform
on an app. We also take a moment to look at how UI Automation and
Instruments work together.

• Chapter 2, Testing Behavior with UI Automation, on page ?, builds on
the basics and leads you through writing a test that asserts a behavior
in the app. We’ll take a tour through the automation-scripting interface
and learn how we can report failures in our tests.

• Chapter 3, Building a Test Suite, on page ?, walks through some simple
techniques to start building up a suite of acceptance tests that run one
after the other against the application. We’ll continue exploring the UI
Automation scripting interface and discuss how to group together output
from various tests.

• Chapter 4, Organizing Test Code, on page ?, explains some good ways
to grow our test code in a way that is readable and maintainable. We’ll
start pulling out reusable pieces into a testing toolbox that we can import
anywhere we need it and represent portions of our application screen
with special objects.

• Chapter 5, Maps, Gestures, and Alerts, on page ?, takes us on a journey
underground to learn how UI Automation talks to our application. We’ll
trigger complex gestures on the map view, alter the way UI Automation
sees the elements on the screen, and discuss how best to handle modal
alert views.

Introduction • viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

• Chapter 6, Strategies for Testing Universal Apps, on page ?, walks through
some scenarios that test the different idioms on iPhone and iPad screens.
We’ll start a separate suite of iPad acceptance tests while reusing all the
testing tools we’ve built.

• Chapter 7, Automating Performance Tests, on page ?, uses the integrated
power of UI Automation and Instruments to record benchmarks as the
app runs through a variety of performance tests. If you’ve ever needed to
tap, tap, tap over and over again to re-create a memory problem, you’ll
love this chapter.

• Chapter 8, Setting Up Application Data, on page ?, introduces concepts
and ideas for bootstrapping the app data in a state that is ready for our
tests. We’ll discuss good app architectures that make this easier, and
look at how environment variables and seed files can inject the information
we need into the app at runtime.

• Chapter 9, Stubbing External Services, on page ?, helps us deal with the
unpredictability of external services. We’ll tackle some techniques to fake
services at the network layer and even fork our Objective-C code to stub
out more-complicated dependencies within the app.

• Chapter 10, Command-Line Workflow, on page ?, provides tips to run
UI Automation tests from shell scripts. We’ll be automating our automated
tests, as it were.

• Chapter 11, Third-Party Tools and Beyond, on page ?, tours some third-
party tools to use with the workflow we discuss in the book. We’ll also
review useful tools outside of the UI Automation sandbox.

By the end of the book, you’ll have a great set of habits you can draw from
when you’re faced with the unique challenges in your applications.

Follow Along with the Source

Most apps are very complicated state machines with so many possibilities for
error that it seems overwhelming. The network, database frameworks, anima-
tions, device orientation—all these external and internal dependencies conspire
to give us quite a challenge.

We’ll face these challenges while studying an actual app throughout the book.
By growing a set of test tools based on the needs of a real app, we’ll keep
ourselves organized and learn to work around the quirks. The source is
available for download from the book’s website (http://www.pragprog.com/titles/jptios).

• Click HERE to purchase this book now. discuss

Great, So How Do We Get There? • ix

http://www.pragprog.com/titles/jptios
http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

Here’s the best way to follow along with the code. Each chapter gets its own
top-level directory prefixed by the chapter number, like 06-Universal. Each
chapter is broken into a series of steps. Every step directory is a complete
copy of the app—a snapshot of what the book expects at that point. This is
so that you can pick up anywhere in the book and everything will work (or
not work if that’s what we happen to be exploring). Each snippet of code ref-
erenced in this text is annotated to point to the step directory it comes from.

Expectations and Technical Requirements

This isn’t a book for iOS beginners. We’re going to dive deep into Xcode’s build
system, the Objective-C runtime, shell scripts, and more. I recommend
starting with these books as prerequisite material:

• iOS SDK Development [AD12], by Chris Adamson and Bill Dudney

• iOS Recipes: Tips and Tricks for Awesome iPhone and iPad Apps [WD11],
by Paul Warren and Matt Drance

• Core Data: Apple’s API for Persisting Data on Mac OS X [Zar12], by Marcus
Zarra

I assume you’ve been through Apple’s introductory material, know about how
view controllers and memory-management work, and know how to build your
own application in the Xcode GUI. We’ll be working with at least Xcode 4.6
and iOS 6.1.

Good luck and happy bug-hunting!

Introduction • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jptios
http://forums.pragprog.com/forums/jptios

