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Introduction
We iOS developers have a lot on our minds. We want to build useful and bug-
free software for our customers while keeping up with Apple’s fast pace.
Software development is fraught with trade-offs and, unfortunately, testing
our software is often traded away in the crunch time before a release date.

So what’s the best way to hunt for bugs in our apps? We spend a lot of our
own time manually launching and walking through the features one by one,
tapping, swiping…over and over again. This book helps us find a better way.

What Can We Do About It?

Nothing will replace the spot-checking ingenuity of a human tester, but we
can certainly automate the important common tasks and free ourselves up
to focus on other things. We want to use automated tests to raise confidence
while we keep forging ahead and to give us useful information when something
goes wrong.

In this book, we’re going to focus on testing by scripting interactions through
the user interface. This is known as full stack or integration testing in some
circles. We’re launching the whole app, tapping and gesturing, waiting for
animations, and reacting to results from the screen.

We’re going to be strategic with how we apply these tests. Automation testing
is a powerful way to smoke out bugs, but it’s not without its limitations. These
kinds of tests are slow and it’s not feasible to test every edge case using this
technique. We’re not going to cover effective lower-level testing strategies such
as unit tests—for more information about that, you’d want to read Graham
Lee’s book Test-Driven iOS Development [Lee12], or Daniel Steinberg’s book
Test Driving iOS Development With Kiwi [Ste12]. Here, we’re looking to test
deep slices of the application while answering the question "Did we wire the
components correctly?"

We have two ultimate goals with these tests. First, we want to verify correct
behavior with acceptance tests that list the steps a user would take and the
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requirements to consider a feature complete. Second, we want to automate
the mundane tasks involved in performance testing. Looking for memory leaks
often involves walking through the app and doing the same thing over and
over again while recording benchmarks. This is a perfect use case for
automation.

Great, So How Do We Get There?

In these pages, we’ll be focusing on UI Automation, a tool Apple provides that
works out of the box and integrates with Xcode. We don’t need to install
anything to get started and try it out. It was first introduced in iOS 4 as part
of Instruments, a robust tool to trace application behavior at runtime. Along
with the rest of the instruments available to us, UI Automation gives us a lot
of power to assert proper behavior and run extensive performance analysis
through different usage scenarios.

Here’s where we’ll be going:

• Chapter 1, UI Automation Overview, on page ?, gets us started by walking
through how to capture and play back in the simulator actions we perform
on an app. We also take a moment to look at how UI Automation and
Instruments work together.

• Chapter 2, Testing Behavior with UI Automation, on page ?, builds on
the basics and leads you through writing a test that asserts a behavior
in the app. We’ll take a tour through the automation-scripting interface
and learn how we can report failures in our tests.

• Chapter 3, Building a Test Suite, on page ?, walks through some simple
techniques to start building up a suite of acceptance tests that run one
after the other against the application. We’ll continue exploring the UI
Automation scripting interface and discuss how to group together output
from various tests.

• Chapter 4, Organizing Test Code, on page ?, explains some good ways
to grow our test code in a way that is readable and maintainable. We’ll
start pulling out reusable pieces into a testing toolbox that we can import
anywhere we need it and represent portions of our application screen
with special objects.

• Chapter 5, Maps, Gestures, and Alerts, on page ?, takes us on a journey
underground to learn how UI Automation talks to our application. We’ll
trigger complex gestures on the map view, alter the way UI Automation
sees the elements on the screen, and discuss how best to handle modal
alert views.
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• Chapter 6, Strategies for Testing Universal Apps, on page ?, walks through
some scenarios that test the different idioms on iPhone and iPad screens.
We’ll start a separate suite of iPad acceptance tests while reusing all the
testing tools we’ve built.

• Chapter 7, Automating Performance Tests, on page ?, uses the integrated
power of UI Automation and Instruments to record benchmarks as the
app runs through a variety of performance tests. If you’ve ever needed to
tap, tap, tap over and over again to re-create a memory problem, you’ll
love this chapter.

• Chapter 8, Setting Up Application Data, on page ?, introduces concepts
and ideas for bootstrapping the app data in a state that is ready for our
tests. We’ll discuss good app architectures that make this easier, and
look at how environment variables and seed files can inject the information
we need into the app at runtime.

• Chapter 9, Stubbing External Services, on page ?, helps us deal with the
unpredictability of external services. We’ll tackle some techniques to fake
services at the network layer and even fork our Objective-C code to stub
out more-complicated dependencies within the app.

• Chapter 10, Command-Line Workflow, on page ?, provides tips to run
UI Automation tests from shell scripts. We’ll be automating our automated
tests, as it were.

• Chapter 11, Third-Party Tools and Beyond, on page ?, tours some third-
party tools to use with the workflow we discuss in the book. We’ll also
review useful tools outside of the UI Automation sandbox.

By the end of the book, you’ll have a great set of habits you can draw from
when you’re faced with the unique challenges in your applications.

Follow Along with the Source

Most apps are very complicated state machines with so many possibilities for
error that it seems overwhelming. The network, database frameworks, anima-
tions, device orientation—all these external and internal dependencies conspire
to give us quite a challenge.

We’ll face these challenges while studying an actual app throughout the book.
By growing a set of test tools based on the needs of a real app, we’ll keep
ourselves organized and learn to work around the quirks. The source is
available for download from the book’s website (http://www.pragprog.com/titles/jptios).
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Here’s the best way to follow along with the code. Each chapter gets its own
top-level directory prefixed by the chapter number, like 06-Universal. Each
chapter is broken into a series of steps. Every step directory is a complete
copy of the app—a snapshot of what the book expects at that point. This is
so that you can pick up anywhere in the book and everything will work (or
not work if that’s what we happen to be exploring). Each snippet of code ref-
erenced in this text is annotated to point to the step directory it comes from.

Expectations and Technical Requirements

This isn’t a book for iOS beginners. We’re going to dive deep into Xcode’s build
system, the Objective-C runtime, shell scripts, and more. I recommend
starting with these books as prerequisite material:

• iOS SDK Development [AD12], by Chris Adamson and Bill Dudney

• iOS Recipes: Tips and Tricks for Awesome iPhone and iPad Apps [WD11],
by Paul Warren and Matt Drance

• Core Data: Apple’s API for Persisting Data on Mac OS X [Zar12], by Marcus
Zarra

I assume you’ve been through Apple’s introductory material, know about how
view controllers and memory-management work, and know how to build your
own application in the Xcode GUI. We’ll be working with at least Xcode 4.6
and iOS 6.1.

Good luck and happy bug-hunting!
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