
Extracted from:

Manage It!
Your Guide to Modern,

Pragmatic Project Management

This PDF file contains pages extracted from Manage It!, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Manage It!
Your Guide to Modern,

Pragmatic Project Management

Johanna Rothman

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Chapter 4

Scheduling the Project
Planning and scheduling are two separate activities. In Chapter 2, Plan-
ning the Project, on page 35, you started the project planning. Here,

you’ll think about scheduling and estimating the project. As you orga-

nize the schedule—and when you reestimate the work—you might have

to modify the plan. That’s fine. Your original plan is just good enough to

start. Expect to refine the plan as you schedule (and reschedule). And,

don’t be afraid to refine the schedule as you replan.

4.1 Pragmatic Approaches to Project Scheduling

You planned just enough to start the project already. You need to sched-

ule enough to start the project. There’s no point to scheduling the whole

darn project when you know the project is going to evolve. If you’re

working with a customer who wants to see a project schedule before

they will sign a contract, be clear that the initial schedule is your best

first guess. It will change. And, have that customer read about accu-

racy and precision of schedules in the tip Estimates Need Accuracy, Not
Precision, on page 88.

A few years ago, I had a conversation with a project manager at a con-

ference. I said it took me anywhere from about half a day to a couple of

days to get started on a project schedule, and I wanted to shorten the

two days down to half a day.

The other project manager stood there with her mouth open. She abso-

lutely didn’t believe that I could schedule a project in half a day. I

explained that I didn’t try to schedule everything, just the next week

or so, and then I would build up the major milestones and the rolling-

wave schedule (see Appendix B, on page 345) over the next few weeks.

PRAGMATIC APPROACHES TO PROJECT SCHEDULING 67

“How do you know the end date?” she asked.

“I don’t, at least not precisely. But if I tried to plan forward to see where

the end date would be that early in the project without any data, I’d be

wrong. Why take the time to schedule in detail when you know you’ll

be wrong?”

She said, “Gee, I never thought of it that way.”

There are many ways to schedule a project. I think top-down, so I cre-

ate a first draft of the plan because that helps me create a first-draft

schedule. Other project managers start with a schedule draft first. Do

what feels most comfortable to you and appropriate for the project. But

don’t neglect either the plan or the schedule. Every project needs both.

Tip: Projects Require Both Plans and Schedules

As the pragmatic project manager, your job is to start the

project with just enough planning and to continue to plan

(and replan) as you proceed. Whatever you do, don’t ignore

either the plan, especially the release criteria, or the sched-

ule. You might not need a fancy schmancy Gantt chart for

a schedule; yellow stickies on the wall are fine for many

projects. But you do need to both plan and schedule.

Your schedule will bear some resemblance to the life cycle you choose.

But remember, a life cycle is a model of how the project could look.

When it’s time to create the schedule, use the life cycle as a guideline,

and make sure you’ve addressed the risks inherent in your life cycle,

no matter how you need to do that. You might add timeboxed iterations

and increments to phase-gate project schedules—as well as planning

to replan—because those actions made sense for the particular project.

Remember that a life cycle is a guide, not a straightjacket.

Scheduling and estimating are two different activities. Scheduling is

ordering and showing the interdependencies of tasks. Estimating is

guessing how many effort-hours a particular task will take. They are

linked, because how you organize the schedule might depend on a given

task’s estimate of the effort-hours and specific people required.

I wish I could wave my magic wand and say, “Here is the One Right Way

to schedule and estimate your project.” But I can’t. We generally need

to estimate things we’ve never done before.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

SELECT FROM THESE SCHEDULING TECHNIQUES 68

Estimation of the unknown is still an art. On the other hand, if you

know what life cycle you’re using, organizing the schedule is easier.

Tip: Timebox Initial Planning

Spend as little time as possible on up-front planning, espe-

cially if your project team is already assigned to your project.

Take just enough time to plan so your project team can start.

Timebox the charter to one hour. Timebox the project plan

to another hour. Timebox the first draft of the schedule to

an hour. The timeboxing will focus everyone on the few vital

pieces they need to start. Once people know what they have

to work on for the next week or two, you can return to the

plans and schedule and see what else you need to write.

4.2 Select from These Scheduling Techniques

I select from among these scheduling techniques when laying out the

project: top-down, bottom-up, and inside out, Hudson Bay Start, and a

short iteration.

Top-Down Scheduling

Top-down scheduling generally starts with milestones. Serial life cycles

tend to start with top-down scheduling, because the phases are so

clear. (Hint: if you must use a serial life cycle, make sure you use

deliverable-based planning as a technique to generate your milestones,

as discussed in Section 4.3, Deliverable-Based Planning, on page 77.)

Organize the project schedule into phases, iterations, or chunks. Lay

them out on a whiteboard or on stickies on a wall. Dwayne Phillips

recommends cards on a wall as another low-tech scheduling technique.

When you schedule with cards on the wall, each person creates cards

with the tasks they think they need to do. Then link the cards with

string [Phi04]. This technique is particularly helpful if you don’t know

where to start.

The team starts organizing the schedule from the highest-level mile-

stones and develops the tasks to support those milestones. As one

or more team members understand more about what each milestone

means, they break the milestone down into its component tasks.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

SELECT FROM THESE SCHEDULING TECHNIQUES 69

The smaller the task at the bottom level, the easier it is to estimate how

long the task will take.

Bottom-up Scheduling

Bottom-up scheduling starts with specific tasks. If you’re using an

incremental life cycle, it might make sense to start with bottom-up

scheduling. “We know we need to do this feature first, then do those

features, and then have a go/no-go decision. . . .”

The project team members, working alone or in cross-functional teams,

develop the milestones from the tasks. As the project manager, you can

ask questions about how things fit together. (The more technical you

are, the more you can help. If you don’t have domain expertise in the

product, don’t interfere.)

Inside-out Scheduling

Inside-out scheduling works best with people who think they need to

be completely adaptable. At one of my project management workshops,

one PM said, “First I make a mind-map [BB96] of everything I know

about the project. I might know some go/no-go review points. I might

know about certain features. But I don’t know about everything at the

same level, so I want to see everything before I start scheduling.”

Your mind-map might be crystal clear to you. But it might not be clear

to others on the project. Mind-maps communicate much more to those

present when it was created than to those who are just shown the

results later. If you and your project team are using inside-out schedul-

ing, make sure the team works together to generate the tasks and mile-

stones.

Hudson Bay Start

Imagine you’re managing a project that’s completely new to you and

the entire project team. You have no idea whether the environment you

have will support the tools. You don’t know how to estimate the project.

Consider a short iteration, such as a Hudson Bay Start.

The Hudson Bay Start approach was originated by the Hudson Bay

Company in the 1600–1700s in northeastern Canada. The Hudson Bay

Company outfitted fur traders. To make sure the traders hadn’t forgot-

ten anything they needed, they left Hudson Bay and camped just a few

miles away. By making camp just a few miles away, the traders ensured

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

SELECT FROM THESE SCHEDULING TECHNIQUES 70

they hadn’t forgotten any tools or supplies—before they abandoned civ-

ilization. With just a short start to their journey, they had a better idea

about their ability to endure the winter.

A Hudson Bay Start is a technique that allows the project team to push

something through the project’s environment. You want this to be as

small a thing as possible. (A “Hello World” program might be just fine.)

The idea is for the project team to see what it would be like to start

working in this environment with this product domain.

If you and the team can’t figure out what it would take to estimate any

piece, timebox a Hudson Bay Start. Start something you can complete

in four hours or less. (This thing doesn’t have to be real functionality.)

After the team has created something, debrief the activity. The team will

know more about how to estimate the tasks needed. If the team knows

only a little more, start with a short iteration, and then decide what to

do.

A Hudson Bay Start helps in several ways. First, the team gains some

confidence that they can accomplish something. Finishing something

helps them gain some insight when it comes to estimating. In addition,

the team has a little insight into how to organize some tasks. “Oh, if

we want to do those features in parallel, we’re going to have to make

another branch and merge back in. Yikes, that means staging integra-

tion. That will take longer than working on the mainline.”

When you hear conversations like this, where people articulate the

risks, then you can capture them in a parking lot (see Appendix B,

on page 345) to deal with later or as you schedule.

Start with a Short Iteration

Use a short timeboxed iteration when the team understands the envi-

ronment but isn’t sure how to estimate the tasks. A short iteration

helps people see how much they can accomplish in one or two weeks,

so their follow-on estimates are more accurate. You can use a short

iteration after a Hudson Bay Start, once the team understands how to

use the environment.

Timebox a short iteration (no more than two weeks—one week is even

better), and see what the team can accomplish in that time. By the

end of the iteration, the team and you will have a better idea about the

requirements, the risks, and what they don’t know.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 71

If you combine a short iteration with a short retrospective, the entire

team will learn more about what it takes to schedule this project.

4.3 Start Scheduling with a Low-Tech Tool

Back in the Stone Age, when I started managing projects, we didn’t have

electronic scheduling tools. We had blackboards, paper, and flowchart

templates. I used a blackboard to lay out the schedule for projects.

Blackboards worked well—if I made a mistake, I erased the sequence

and inserted it where I needed it.

But blackboards can become messy if you have to erase and rewrite

information. Even when I moved to whiteboards in the Neolithic Age,

the whiteboard can be hard to see—sometimes the old information is

still visible under the new drawings.

When yellow stickies came out in the Modern Age, I moved to yellow

stickies.1 It’s easy to write a task on a sticky, put the sticky up on the

wall, and discuss with the rest of the project team—sometimes quite

loudly—the sequence of tasks or who will do them or what the risks are.

And, if the task is in the wrong place—because the team sees another

way to organize the project—it’s easy to move the sticky from one place

to another.

Yellow stickies involve the whole team in scheduling. The team will

explain the risk as they proceed, providing you with valuable infor-

mation you can use for steering the project.

High-Tech vs. Low-Tech Scheduling

by Sandy, seasoned project manager

I’ve been managing projects for about fifteen years. I started when we had

scheduling tools, and I became an expert at the best-known tool. Sure, it

had problems originally rolling up subprojects, but I knew how to get

around that. And, we had a little problem with trying to track the details,

but I got good at figuring out how to outwit the tool. I had a little problem

with earned value calculations, but we moved to implementing by feature,

and that helped (see Section 11.2, Earned Value for Software Projects
Makes Little Sense, on page 220).

1. For those of you who are wondering why I didn’t move to an electronic scheduling
tool, the answer is easy—one didn’t exist for the operating systems I was using. Since it

didn’t exist, I couldn’t use it.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 72

Then I started managing a really large program a couple of years ago,

including about 300 people in six sites. I’m no dummy, so I brought all

the project managers for an initial planning meeting. I had my computer

hooked up to the projector, and we started developing the schedule.

Everyone was yelling at me, trying to make me see where tasks belonged.

I was a little stressed but was getting there. Then the power died.

Bob, one of the subproject managers, said, “Don’t go anywhere. I’ll be

right back, and we can continue.” He came back in about five minutes

with pads of yellow stickies and pens. He explained how we would

schedule and then everyone started writing their stickies. In about ten

minutes, we started posting the stickies on the wall and discussed what

each one meant and where we had issues.

We had an initial schedule in less than an hour. We took pictures of it, in

case the power stayed off and my computer ran out of juice.

At the end of the meeting, every subproject manager congratulated me on

how quickly we developed a schedule. Me! I gave all the credit to Bob. That

schedule was good for a couple of months, and when we had to update it,

we gathered the subproject managers together and did the same thing.

I was amazed by how well it worked. I still use scheduling tools, but I

always start with low-tech scheduling, and if we need a major replan, I

use low-tech scheduling now.

Many project managers prefer to start scheduling with an electronic

scheduling tool. If you need to lay out many tasks at once and you

think the sequence of those tasks are not going to change, maybe an

electronic scheduling tool works at the beginning of the project. But it

doesn’t involve the entire team in the scheduling activity. Using a tool to

generate a schedule shortcuts the discussion and doesn’t expose silent

dependencies and risks.

The project manager can type only one task at a time—and only the

project manager can create tasks. The scheduling tool can show you

only one page of information at a time, and the team might lose context

if they can’t see the whole schedule.

If you’re not using rolling-wave planning, then an electronic schedul-

ing tool might be OK once you and the team create the initial project

schedule. (You will lose the benefit of a Big Visible Chart or Information

Radiator; see Chapter 11, Creating and Using a Project Dashboard, on

page 214.) But starting with a tool says to the team, “I’m in charge of

the schedule; you’re not.”

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 73

If the project team owns the schedule, they will stay committed to it.

If you own the schedule, you’re likely to micromanage the team, not

manage the interdependencies of their tasks.

I hope I’ve convinced you to start with stickies or cards on the wall. If

you’re not sure how to do that, here are several techniques I’ve used for

different projects.

Basic Sticky Scheduling

Gather the entire project team together in a room with a long wall or a

long whiteboard. Hand everyone a pad of yellow stickies and a medium

or bold black pen. (I prefer to use three-inch by five-inch stickies so

they’re big enough to read and a felt-tip black pen.) If you know you’re

using a serial, iterative, or incremental life cycle, post the major mile-

stones on the wall so people can see the structure of the project. Ask

everyone to write all their tasks down on a sticky, one task per sticky.

As the team members write down tasks, they post them on the wall.

(You can see examples of this in Figure 4.1, on the next page, as well

as in Figure 4.2, on page 75.)

Assign one part of the wall as the parking lot (Appendix B, on page 345),

the place where the team will collect questions and assumptions that

you’ll need to resolve as part of the scheduling. I use flip chart paper

for the parking lot, so if I need to take the parking lot back to my office

to resolve, it’s easily transportable.

Now stand back, out of the way. The project team members will start

collaborating about the sequence of events, any prerequisites, assump-

tions, and questions.

As developers start writing their tasks, they will have questions for

requirements analysts, writers, and testers—who will have questions

for the developers. The project team starts to bond in a cross-functional

way before the project “starts.” (In reality, the project has already star-

ted—see the sidebar on page 32—there just are no other artifacts at this

time.) You can see what a short project might look like in Figure 4.1, on

the next page.

Once the team has written down as much as they can and resolved the

issues, it’s time for you to be involved. Expect to see these issues in the

schedule:

• The team has scheduled only the first few weeks of their work.

They can’t see much more detail than a few weeks out, so that’s

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 74

Figure 4.1: One project’s yellow sticky schedule

all they’ve scheduled. That’s OK, because you can use rolling-wave

planning (Section 5.6, Using Rolling-Wave Scheduling, on page 97)

to iterate on the schedule. And, it’s OK because you don’t want

people to provide detail that isn’t based in reality. More detail is a

waste of time.

• You might see long sequences of serial tasks. Expect this in a serial

life cycle. But if you’re seeing this in an iterative or incremental life

cycle, ask the team whether something is preventing them from

working more in parallel. See Figure 4.2, on the next page, to see

exactly the same project as Figure 4.1—except organized in a more

serial way.

• You might see long sequences of many parallel tasks. You have to

worry about this only in a serial life cycle, which does not—by its

nature—lend itself to parallelism. However, it’s a risk to the project

in any life cycle other than agile. The risk is that people will fall

out of sync and extend the critical path where you did not expect

the critical path to be.

Once the team has created the schedule, the team is ready to estimate

how long each task will take.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 75

Figure 4.2: Another project’s yellow sticky schedule

Sticky Scheduling with Arrows

One of my clients starts with yellow-sticky scheduling as described

here, but once the schedule is “set,” they draw arrows from one sticky

to another. The arrows help them in several ways. The first is that if a

sticky falls down, they know where to put it back. The second is that

after they do the initial yellow-sticky scheduling, they transition to an

electronic scheduling tool. A project coordinator transcribes each sticky

into a task into the tool, and the arrows help them keep track of depen-

dencies.

Sticky Scheduling for Each Group

If you’re stuck with a phase-gate schedule and can’t create a cross-

functional team to implement by feature, you might need the help of

a schedule to convince your management that there are other options.

I’ve used sticky scheduling for a week-by-week look at the schedule to

help management understand that organizing by functional team slows

the project down.

On a large whiteboard or on paper taped to the wall, draw vertical lines

down, one for each week. Use different colored stickies to show when

different people in different functional organizations are working on the

project.

Don’t forget to show the end of the project. The end of functionally

organized projects tends to be difficult. Because management thinks

the developers are free to start another project, they are less dedicated

to the project at the time the project needs them most—when it’s time

to fix defects.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 76

Sticky Scheduling for Features

Recently, I’ve started using sticky scheduling to show how each feature

will integrate with the others. If you are working on complex projects

where you have dependencies during the project for integration, you

might find it useful to plan an iteration’s worth of work with stickies.

Generate a sticky for each deliverable. Sometimes, a single feature will

have several interim deliverables. Put the stickies up on the wall. Ask

the project team to organize when they need which deliverable delivered

into the code base. Ask the team to add any hard dates; “If you don’t

deliver that piece then, we can’t finish before the end of the iteration.”

Especially if you’re working in short iterations, you don’t need to tran-

scribe the stickies into a Gantt chart. If you’re working in an incremen-

tal life cycle, you might need to tape the stickies up for a longer project

or use a Gantt to manage the dependencies.

Benefits of Using Sticky Scheduling

If you use sticky scheduling, you will not have a beautiful Gantt chart

that can show you the critical path. That’s good, because the critical

path for a software project runs through the tasks, the people, and

sometimes the equipment. And, I bet your critical path changes day

by day, depending on what people finished. Even if your critical path

doesn’t change daily, it changes weekly. If you don’t have a line on the

Gantt chart that purports to show you the critical path, you and the

team will have to think about it. Thinking about it more consciously

will help everyone to manage it.

In addition, a yellow-sticky schedule will not show you the end date.

That’s because you should never estimate a single-point end date

[DL03]. But since a scheduling tool does calculate the end date (and

it’s the earliest possible end date you can’t prove the project won’t be

complete by), people—especially senior management—believes that end

date.

If you’re running a multisite project, you can still use sticky schedul-

ing. If each team is responsible for a complete deliverable (a set of tested

implemented features; see Section 12.3, Make Sure Each Site Has Com-
plete Deliverables to the Project, on page 251), each team does its own

day-to-day scheduling. You gather the team leads or project managers

together to make sure they understand who is delivering what to whom

and when. Since you’re dealing with major milestones, you can use

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 77

videoconferencing or webconferencing to use the equivalent of sticky

scheduling.

Deliverable-Based Planning

Yellow-sticky planning lends itself well to deliverable-based planning.

As people think about what they have to deliver to the rest of the

project, they develop milestones based on deliverables, not on the end-

ing of phases.

Phase-based planning or functional-based planning assumes that

teams of people from a particular function are responsible for a piece

of the project. And you can assume a phase of the project is done

when those people say they are done. If you’ve ever worked on a project

that had a milestone such “requirements freeze” or “code freeze,” you’ve

worked on a phase-planned project.

The problem is that although those people try hard to complete their

deliverables, the freezes are rarely frozen, and the completes are mostly

incomplete. You end up with slushy milestones. The way to avoid slushy

milestones is to plan for the milestone as a rollup of the tasks before

it. If you know you have several areas of requirements, the milestone

“requirements freeze” is a rollup of “requirement 1 written and re-

viewed,” “requirement 2 written and reviewed,” “requirement 3 written

and reviewed,” and so on, until all the requirements are in the rollup.

You can use deliverable-based planning in any life cycle. Especially

if you must use a serial life cycle, use deliverable-based planning to

obtain feedback early about the project’s progress. If you can’t meet

requirements freeze, how can you know you’ll meet any of the later

milestones?

Tip: Late Projects Don’t Make Up Time; They Get Later

If you realize at the beginning of the project that the team is

not making the progress you want to see, decide what to do

differently. Late projects never make up time. They get later

and later and later. . . .

If you do think the project will make up time, you will find

yourself in the schedule game discussed in Section 6.15,

We’ll Go Faster Now, on page 133.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

START SCHEDULING WITH A LOW-TECH TOOL 78

Remember This

• Start scheduling with low-tech tools. If you really need a schedul-

ing tool, transfer the data later. Be aware of the costs associated

with losing the Big Visible Chart or Information Radiator.

• Schedule by deliverables, not by functions.

• Plan to iterate the schedule. A write-once schedule is not worth

the time you spent generating it.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

If you’ve enjoyed this book by Johanna Rothman, and want to advance your management

career, you’ll be interested in seeing what happens Behind Closed Doors. And see how you

can lead you team to success by using Agile Retrospectives.

Behind Closed Doors
You can learn to be a better manager—even a great
manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring
• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby
(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

Agile Retrospectives
Mine the experience of your software development
team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to
help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,
and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/rdbcd
http://pragmaticprogrammer.com/titles/dlret

Competitive Edge
Need to get software out the door? Then you want to see how to Ship It! with less fuss and
more features. And every developer can benefit from the Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of
tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress on

your project. • You want to make yourself and your

team more valuable. • You’ve looked at
methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or
CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney
(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility
throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •
Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Cutting Edge
Now that you’ve finished your project, are you sure that it’s ready for the real world? Are
you truly ready to Release It! in this crazy world?

Interested in Ruby on Rails, but don’t want to learn another framework from scratch?

You don’t have to! Rails for Java Programmersleverages you and your team’s knowledge
of Java to quickly learn the Rails environment.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,
getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or
an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at
3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Rails for Java Developers
Enterprise Java developers already have most of
the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what
this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project
Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/fr_r4j

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the language. The Pick-

axe: Programming Ruby: The Pragmatic Programmer’s Guide, Second Edition. This is the
definitive guide for all Ruby programmers. And you’ll need a good text editor, too. On the

Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,
is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods
• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit
testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,
once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,
saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the
way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Manage It! Home Page

http://pragmaticprogrammer.com/titles/jrpm

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/jrpm.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/jrpm
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
http://pragmaticprogrammer.com/titles/jrpm
http://www.pragmaticprogrammer.com/catalog

