
Extracted from:

Using JRuby
Bringing Ruby to Java

This PDF file contains pages extracted from Using JRuby, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 2

Driving Java from Ruby
It might be tempting to think of Java/Ruby integration as nothing more

than calling from one language to another. But that’s selling JRuby

short. In a typical project, you’re really interacting with both platforms.

You might construct a Ruby object, pass it to a Java function, and

watch the Java code call other Ruby methods you’ve defined.

In this chapter, we’ll look at cases where the interaction starts in Ruby:

calling Java methods from Ruby code, implementing Java interfaces in

Ruby, and so on. In the next chapter, we’ll start with a Java program

and work our way back to Ruby.

2.1 Seeing Java Through Ruby Glasses

The first use case for JRuby, and still the most common one today, is

calling a Java method from Ruby. Why would someone want to do this?

There are thousands of reasons. Here are just a few of the things you

can do with this interoperability:

• Visualize geographic data with NASA’s World Wind project.1 In Fig-

ure 2.1, on the following page, you can see a map of our home-

towns that we put together with just a few lines of Ruby.

• Render beautiful SVG graphics with the Apache Batik project, like

the folks at Atomic Object did for their cross-platform simulation

app.2. The elegant visuals they achieved are shown in Figure 2.2,

1. http://worldwind.arc.nasa.gov

2. http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

http://worldwind.arc.nasa.gov
http://spin.atomicobject.com/2009/01/30/ruby-for-desktop-applications-yes-we-can

SEEING JAVA THROUGH RUBY GLASSES 34

Figure 2.1: Locating JRuby authors with World Wind

on the next page. (Image used with permission of the Avraham Y.

Goldratt Institute, LP.)

• Handle a protocol or data format for which a Java library is the

best fit. For example, you might choose the Java-based iText library

to add PDF support to your Ruby program—especially if you need

digital signatures or some other feature specific to iText.3

• Slay the “cross-platform Ruby GUI” dragon by writing a Swing or

SWT program in Ruby.

• Boost the performance of a Ruby program. For example, the team

behind the Redcar text editor know they will always have the

option of dropping down into Java for any performance-critical

parts.4

3. http://www.itextpdf.com

4. http://redcareditor.com

CLICK HERE to purchase this book now.

http://www.itextpdf.com
http://redcareditor.com
http://www.pragprog.com/titles/jruby

SEEING JAVA THROUGH RUBY GLASSES 35

Figure 2.2: Simulating industrial processes with Batik

• Tame a legacy Java project by walling off the old spaghetti code

behind a clean Ruby interface.

• Sneak Ruby into a Java shop; after all, JRuby is “just another .jar

file.”

• Write great tests for your Java code, using one of Ruby’s outstand-

ing test frameworks.

• Index and search huge amounts of text with the Lucene search

engine.5

• Write a database-backed web application in the Rails framework.

Behind the scenes, Rails’s database adapters call into Java’s database

libraries to do the heavy SQL lifting.

All of these scenarios are the bread and butter of JRuby and are well

supported. But as in any domain where two languages meet, there are

5. http://lucene.apache.org

CLICK HERE to purchase this book now.

http://lucene.apache.org
http://www.pragprog.com/titles/jruby

SEEING JAVA THROUGH RUBY GLASSES 36

some subtleties, gotchas, and impedance mismatches.6 This chapter

will address many of these edge cases.

First things first, though. We’ll lead off with the basics of accessing Java

classes from JRuby, starting with how your Ruby code can load and

interact with Java libraries. Then we’ll explore the details of parameter

passing and automatic type conversions. Finally, we’ll show a few tips

and tricks to make Java classes and objects a natural part of your Ruby

programs.

A Simple Example: Wrapping a Library

Let’s start with a working program to drive a Java library. We’ll expand

on one of the examples we described earlier: using the iText library

to generate a PDF file. This will be just enough to give a hint of the

flavor of driving Java, without having to bang our heads against the

more obscure edge cases (yet). Download the latest .jar (for example,

iText-5.0.1.jar) from the official site, and copy it into the directory where

you’re following along in code.7 Next, add this snippet to a file called

pdf_demo.rb:

Download java_from_ruby/pdf_demo.rb

require 'java'

pdf = com.itextpdf.text.Document.new

para = com.itextpdf.text.Paragraph.new 'Brought to you by JRuby'

file = java.io.FileOutputStream.new 'pdf_demo.pdf'

com.itextpdf.text.pdf.PdfWriter.get_instance pdf, file

pdf.open

pdf.add para

pdf.close

In the spirit of walking before we run, let’s walk through the source

before we run the program. In the opening lines, we create a few Java

objects the same way we’d create Ruby ones—by calling the class’s new

method. We use a typical full-package name for each class (for example,

com.itextpdf.text.Document).

6. The term impedance mismatch comes from electrical engineering. It refers to the

power lost to reflection when two circuits are connected. It’s also a poetic way to describe

the conceptual losses between two different software domains.

7. http://sf.net/projects/itext/files

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/java_from_ruby/pdf_demo.rb
http://sf.net/projects/itext/files
http://www.pragprog.com/titles/jruby

SEEING JAVA THROUGH RUBY GLASSES 37

Figure 2.3: The generated PDF in all its glory

In JRuby, Java methods look and act like Ruby ones. All the method

names you see in this snippet—open, add, and close—belong to Java

classes. That includes get_instance, an alias JRuby has created for getInstance()

to make it fit better in the Ruby universe.

Some Ruby types get converted into their Java counterparts automati-

cally for you, such as the “Brought to you...” string. Others need a little

hand holding; you’ll see a few of those cases later.

Now that you’ve had a chance to look through the code, let’s run it.

You’ll need to tell JRuby where the external iText library lives, by setting

the classpath. Java provides the -cp option for this purpose. JRuby will

forward any option to the underlying Java runtime if you preface it

with -J. Go ahead and try the following command, adjusting the version

number of iText to match what you downloaded:

$ jruby -J-cp iText-5.0.1.jar pdf_demo.rb

That’ll create a PDF file called pdf_demo.pdf in the same directory. If

you open it, you should see something like Figure 2.3. It’s not the most

visually breathtaking use of the format, but you get the idea.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

SEEING JAVA THROUGH RUBY GLASSES 38

Another Simple Example: Extending a Ruby Program

Let’s consider another big use case: taking an existing Ruby program

and rewriting part of it in Java for speed. Just for fun, we’ll make this

one a GUI app, albeit a trivial one. We’re going to build a calculator for

the famous stack-busting Ackermann function.8 The Ruby code for this

reads like the official mathematical definition:

Download java_from_ruby/ackerizer.rb

class Ackermann

def self.ack(m, n)

return n + 1 if m == 0

return ack(m - 1, 1) if n == 0

return ack(m - 1, ack(m, n - 1))

end

end

This implementation is far too slow for a production app, as will become

painfully clear after we wrap a Swing user interface around it. To build

our GUI, we’re going to use a Ruby helper called Rubeus.9 Go ahead

and install that now:

$ jruby -S gem install rubeus

We’ll talk more about Rubeus in Chapter 10, Building GUIs with Swing,

on page 237. For this short example, the code is simple enough to show

without much explanation. It’s just a couple of text inputs and a button:

Download java_from_ruby/ackerizer.rb

require 'rubygems'

require 'java'

require 'rubeus'

include Rubeus::Swing

JFrame.new('Ackerizer') do |frame|

frame.layout = java.awt.FlowLayout.new

@m = JTextField.new '3'

@n = JTextField.new '9'

JButton.new('->') do

@result.text = Ackermann.ack(@m.text.to_i,

@n.text.to_i).to_s

end

8. http://en.wikipedia.org/wiki/Ackermann_function

9. http://code.google.com/p/rubeus/

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://media.pragprog.com/titles/jruby/code/java_from_ruby/ackerizer.rb
http://en.wikipedia.org/wiki/Ackermann_function
http://code.google.com/p/rubeus/
http://www.pragprog.com/titles/jruby

SEEING JAVA THROUGH RUBY GLASSES 39

Figure 2.4: The Ackermann calculator

@result = JTextField.new 10

frame.pack

frame.show

end

Go and throw those two code snippets into a file called ackerizer.rb,

and then launch the app. You’ll most likely need to increase the JVM’s

stack size, using Java’s standard -Xss setting together with JRuby’s -J

“passthrough” option:

$ jruby -J-Xss64m ackerizer.rb

You should see something like Figure 2.4. Try clicking the button to

calculate ack(3, 9). The results will probably take several seconds to

appear in the window. Because our app is a one-trick pony, there’s

only one suspect worth investigating: the ack method.10

There’s a lot we could try in Ruby before jumping into Java. At the very

least, we should be storing our intermediate values so that we don’t

have to calculate them over and over. But let’s say you’ve done all that,

and you still need faster results. Here’s how you’d move the calculation

into a Java class:

Download java_from_ruby/Ackermann.java

public class Ackermann {

public static int ack(int m, int n) {

if (m == 0)

return n + 1;

if (n == 0)

return ack(m - 1, 1);

10. On any nontrivial project, you’ll want to profile your code, rather than relying on

inspection and guesswork. See Appendix C, on page 291 for how to do that with JRuby.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/java_from_ruby/Ackermann.java
http://www.pragprog.com/titles/jruby

DEALING WITH THE CLASSPATH 40

Charlie Says. . .

The Default Package

Notice here we’re using the Java:: prefix. In this case, it’s
because our Java-based Ackermann class is in the default

package. Such classes can be accessed immediately under
the Java namespace.

return ack(m - 1, ack(m, n - 1));

}

}

...which you can then compile like so:

$ javac Ackermann.java

We need to make only one change to the Ruby code to use the new Java

class. In the middle of the button’s on_click handler, add the text Java::

to the beginning of the Ackermann.ack call, like this:

@result.text = Java::Ackermann.ack(@m.text.to_i,

@n.text.to_i).to_s

When you rerun the program and click the button, the result should

appear immediately. Now that we’ve seen examples of the most common

ways people use JRuby, let’s look at each step of the process in more

detail.

2.2 Dealing with the Classpath

Before you can use that piece of external library wizardry, you have

to find it. When you bring Java code into your app, you’re playing by

Java’s rules. Rubyists are used to saying require ’some_file_name’ and

counting on the file to show up inside one of Ruby’s search paths. By

contrast, Java looks for each class by its fully specified package name;

the physical location of the file isn’t as important.

For readers coming from the Ruby world, the Classpath is the list of

directories and .jar files where Java (and therefore JRuby) will look

for external libraries. If you’re doing a java_import (see Section 2.3, By

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Using JRuby

http://pragprog.com/titles/jruby

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jruby.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/jruby
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jruby
www.pragprog.com/catalog

