
Extracted from:

Using JRuby
Bringing Ruby to Java

This PDF file contains pages extracted from Using JRuby, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

THE NITTY-GRITTY 71

$./bin/historian7 PASTA NOODLES

ruby_from_java/historian/lib/git/lib.rb:700:in `command':

git diff "-p" "PASTA" "NOODLES" 2>&1:fatal: ambiguous argument 'PASTA':

unknown revision or path not in the working tree. (Git::GitExecuteError)

Use '--' to separate paths from revisions

from ruby_from_java/historian/lib/git/lib.rb:249:in `diff_full'

from ruby_from_java/historian/lib/git/diff.rb:100:in `cache_full'

from ruby_from_java/historian/lib/git/diff.rb:106:in `process_full'

from ruby_from_java/historian/lib/git/diff.rb:64:in `each'

from ruby_from_java/historian/lib/archive7.rb:10:in `history'

from <script>:1

Couldn't generate diff; please see the log file.

So, there you have it: a program written in Java that calls a Ruby

method to inspect the source code of...the program itself. We will be cov-

ering some more details for the rest of this chapter, but you largely have

all the skills you need now. Go forth and make some simple embedded

Ruby applications, or read on for the nitty-gritty details.

3.2 The Nitty-Gritty

There are always special circumstances and strange little details that

a project runs into. If you find yourself wanting more control knobs for

the embedding API than we’ve shown you so far, then read on.

Other Embedding Frameworks

All the examples we’ve seen so far have used Embed Core, the main

embedding API that ships with JRuby. This API offers a great deal of

interoperability. You can call a Ruby method, crunch the results in

Java, and hand data back into Ruby. What makes this deep integration

possible is that Embed Core was created just for JRuby.

There are times, however, when a general scripting API is a better fit

than a Ruby-specific one. For instance, if your Java project already

includes other scripting languages, you probably don’t want to use a

separate API for each language.

JRuby supports the two most popular Java embedding APIs. Bean

Scripting Framework, the older of the two, began at IBM and is now

hosted by the Apache Jakarta project. javax.scripting, also known as JSR

223, is part of the official JDK. Both have a similar flavor: you connect a

general-purpose script manager to a language-specific scripting engine.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

THE NITTY-GRITTY 72

In case you’re curious, here’s how the final Historian example from

earlier would look in JSR 223, minus the exception code. First, the

imports at the top need to change a little:

Download ruby_from_java/historian/src/book/embed/Historian8.java

package book.embed;

import java.lang.NoSuchMethodException;

import java.util.List;

import javax.script.Invocable;

import javax.script.ScriptEngine;

import javax.script.ScriptEngineManager;

import javax.script.ScriptException;

Now for the Ruby embedding code:

Download ruby_from_java/historian/src/book/embed/Historian8.java

public static void main(String[] args)

throws ScriptException, NoSuchMethodException {

ScriptEngineManager manager = new ScriptEngineManager();

ScriptEngine engine = manager.getEngineByName("jruby");

Invocable invocable = (Invocable)engine;

engine.eval("$LOAD_PATH << 'lib'");

engine.eval("require 'archive8'");

Object archive = engine.eval("Archive.new");

List<GitDiff> diffs = (List<GitDiff>)

invocable.invokeMethod(archive,

"history",

new Revisions(args[0], args[1]));

for (GitDiff diff : diffs) {

System.out.println("FILE: " + diff.getPath());

System.out.println(diff.getPatch());

}

}

JSR 223 is able to perform the same tasks for Historian that Embed

Core does, in a slightly less expressive notation. BSF has a similar feel

to what you saw previously, so we won’t show a detailed example for it.

Instead, we recommend you use JSR 223 for non-Ruby-specific embed-

ding projects, because of its official position as part of the JDK.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://media.pragprog.com/titles/jruby/code/ruby_from_java/historian/src/book/embed/Historian8.java
http://www.pragprog.com/titles/jruby

THE NITTY-GRITTY 73

Containers and Contexts

Each ScriptingContainer object that you create for embedding Ruby code

has an associated context object, which JRuby uses for internal book-

keeping. By “bookkeeping,” we mean things like the Ruby interpreter

instance, I/O streams, a special variable store, and configuration options.

The simplest ScriptingContainer constructor creates a context implicitly

for you. In case you want a little more control, you can specify the kind

of context you want:

new ScriptingContainer(); // defaults to SINGLETON

new ScriptingContainer(LocalContextScope.SINGLETON);

new ScriptingContainer(LocalContextScope.THREADSAFE);

new ScriptingContainer(LocalContextScope.SINGLETHREAD);

Singleton

SINGLETON, the default choice, creates one Ruby runtime shared by the

entire JVM. No matter how many ScriptingContainers you create, they’ll

all share the same context if you use this option. You can either specify

this type explicitly or use the no-argument form of the constructor.

Singleton contexts are simple to use, because you don’t have to pass

ScriptingContainer references all around your program. But they also

have a big drawback: they’re not thread-safe. Try to run two chunks

of Ruby code in different Java threads, and...kaboom!

Thread-Safe

If you know multiple threads will be accessing the same ScriptingCon-

tainer (or if you’re just feeling paranoid), then you should use a THREAD-

SAFE context. This type synchronizes all access to the Ruby runtime so

that multiple threads can safely call into it without crashing.

This mode is certainly safer than SINGLETON, but it doesn’t automati-

cally make your concurrency problems go away. Under a heavy load,

you may end up with a lot of waiting threads. It’s even possible run

into a deadlock situation. For instance, if an embedded script returns

a Ruby object that, in turn, calls back into the embedding API, you

can end up with a call that never returns. Fortunately, this is a bit

of an extreme case. Just keep in mind the hazards of multithreaded

programs as you’re writing your code.8

8. For more information on what some of these hazards are, see Ousterhout’s “Why

Threads Are a Bad Idea (for most purposes)” at http://home.pacbell.net/ouster/threads.pdf.

CLICK HERE to purchase this book now.

http://home.pacbell.net/ouster/threads.pdf
http://www.pragprog.com/titles/jruby

THE NITTY-GRITTY 74

Tom Says. . .

What Type of Context Should You Use?

Even though it’s a bit of extra work up front, I recommend start-
ing your project off with THREADSAFE containers. This keeps you
in the habit of passing around the ScriptingContainer reference,
in case you later decide to switch to using to one of the other
two modes. It also makes it harder to accidentally kill your Ruby
runtime.

Single-Threaded

So, the first mode guaranteed a single Ruby runtime, and the sec-

ond introduced some thread safety. The third mode does...none of the

above. Each time you create a ScriptingContainer with the SINGLETHREAD

option, you actually create a brand new context. This new context is

completely unconcerned with concurrent access. Everything rides on

you, the programmer, to access the container from one thread at a

time.

In truth, this kind of context is not such a dangerous beast if used in a

controlled environment. For example, if you are running a servlet that

spins up multiple threads, you can safely spawn one SINGLETHREAD-ed

ScriptingContainer per servlet thread in Servlet.init(). Some configurations

of the jruby-rack project use this strategy.

Ruby Version

JRuby supports both Ruby 1.8 and Ruby 1.9 syntax and semantics. By

default, a new ScriptingContainer uses Ruby 1.8 mode, but it’s quite easy

to use 1.9 instead:

container.setCompatVersion(org.jruby.CompatVersion.RUBY1_9);

Compile Mode

We hesitate even to bring up this option but have decided to give it

a passing mention, in case you encounter it in the wild or in docu-

mentation. In practice, we strongly recommend leaving it at the default

setting.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

EMBEDDING STRATEGIES 75

The compile mode determines when, if ever, your ScriptingContainer object

compiles individual Ruby methods down to JVM bytecode. It’s tempting

to set this option to force, meaning “always compile.” After all, compiling

just sounds faster, doesn’t it?

Of course, real life is never so simple. The act of compilation takes time,

so it only makes sense to compile a Ruby method if it’s going to be

called often enough for the time savings (if any!) to outweigh the initial

delay. That’s exactly what the default option, jit, tries to do.9 There are

times when compiling Ruby code makes sense but not when you’re

embedding a JRuby runtime in a Java project.

There are a few more options beyond these basic ones. You can control

how an embedded JRuby runtime finds Ruby code, how it finds Java

classes, how local variables are remembered from one invocation to the

next, and more. Our goal, however, isn’t to present a laundry list of

every possible setting but to show you the ones you’re most likely to

encounter in the real world. For the rest, you may want to have a peek

at the reference documentation.10

3.3 Embedding Strategies

In our Historian example, we saw several different ways to stitch the

Java and Ruby sides together. You can pass a Java class into your

Ruby script, make a Ruby class that implements/extends a Java type,

or just use simple, coercible types such as strings.

There is no single best approach that applies in all situations. This

section will break down some of the reasons why you may consider

picking one strategy over another.

Passing Java Data Into Ruby

How do you get data into your embedded Ruby script? Passing in a Java

object is the easiest approach. The embedded script can call the object’s

methods just as if they were written in Ruby. You can even decorate the

object with additional, easier-to-use methods that actually are written

in Ruby.

When is passing data into Ruby as plain Java objects not a good fit? It

depends on how often the Ruby script ends up calling back into Java.

9. http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/

10. http://wiki.jruby.org/RedBridge#Configurations

CLICK HERE to purchase this book now.

http://www.realjenius.com/2009/10/06/distilling-jruby-the-jit-compiler/
http://wiki.jruby.org/RedBridge#Configurations
http://www.pragprog.com/titles/jruby

EMBEDDING STRATEGIES 76

Calling from Ruby to Java is a little slower than staying inside the Ruby

universe. In many cases the difference is unnoticeable, but in others,

the type coercion cost (for example, copying a java.lang.String to a Ruby

String) makes this approach too slow.

So if your Ruby code needs to call a string-returning Java method in

a tight loop, consider reshaping your solution a bit. Perhaps the Java

side could assemble a Ruby object with the data preconverted and pass

that in instead. Or you could move that time-sensitive loop into your

Java code.

We don’t mean to scare you away from the direct approach. Start out by

passing a Java object into Ruby. If this doesn’t meet your performance

goals, then measure and rework.

Returning Data to Java

Getting data back into Java-land is a little more involved; Java knows

less about JRuby than JRuby knows about Java. In general, there are

three options:11

1. Return a Ruby object that implements a Java interface.

2. Return a Ruby object that extends a Java class (concrete or abstract).

3. Construct a Java object in Ruby and return it.

Options 1 and 2 are similar, in that you are returning a Ruby object

that is tied to the JRuby runtime it came from. If your Java code calls

methods on the object, these invocations will land back in the same

JRuby runtime.

As we saw in Section 3.2, Containers and Contexts, on page 73, this

reuse of runtimes can have interesting consequences for multithreaded

Java programs. If you are passing objects between threads without

using THREADSAFE mode, you can crash the Ruby runtime.

Option 3 is much less prone to threading issues than the other two

choices. It can also be slightly faster, since you’re not dispatching func-

tion calls from one language to another.

The obvious downside is inelegance. If you have a small, clean Ruby

script, then the extra step of constructing a Java class for the sole

11. Technically, there’s a fourth option: calling become_java! on a Ruby class. But we

don’t recommend it.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

WRAPPING UP 77

purpose of returning results will feel like makework.12 If, on the other

hand, you can build a simple Java class that doesn’t look too out of

place alongside your Ruby code, then go for it.

Type Coercion Pitfalls

JRuby strives to do the right thing with type coercions. As you call into

Ruby code, and as that Ruby code returns data back to Java, many

types will get implicitly converted to similar types in the other language.

This approach is not, however, immune to mishaps. Once an object is

coerced to another type, no matter how similar, it really is a different

object. Code that relies on object identity will not work right. For exam-

ple, Maps may not work as you expect.

We’ve discussed a lot of “doom and gloom” scenarios in this section.

While these are important to keep in mind, remember that, for the most

part, things will just work. If you go about your project armed with the

knowledge of which subtleties can bite you and what to do about them,

you’ll be fine.

3.4 Wrapping Up

In this chapter, we looked at the various ways to call from Java into

Ruby, all in the context of a real-life example. We then highlighted a

couple of specific features of JRuby embedding that may help you in

your own projects. Finally, we zoomed out to discuss the general trade-

offs among embedding approaches.

We hope this discussion has whetted your appetite to introduce Ruby

into your Java project. In the next chapter, we’re going to take the next

logical step and compile Ruby programs down to JVM bytecode.

12. Anyone remember the original EJB specification?

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Using JRuby

http://pragprog.com/titles/jruby

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jruby.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/jruby
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jruby
www.pragprog.com/catalog

