
wwtcps | 1



Working With TCP Sockets

Copyright (C) 2012 Jesse Storimer.

wwtcps | 2



Chapter 0

Introduction
Sockets connect the digital world.

Think for a minute about the early days of computing. Computers were something used
exclusively by the scientists of the day. They were used for mathematical calculations,
simulations; Real Serious Stuff™.

It was many years later when computers were able to connect people that the layperson
became interested. Today, there are far more computers being used by laypeople than
by scientists. Computers became interesting for this group when they could share
information and communicate with anyone, anywhere.

It was network programming, and more specifically the proliferation of a particular
socket programming API that allowed this to happen. Chances are, if you're reading
this book, then you spend time every day connecting with people online and working
with technology built on the idea of connecting computers together.

So network programming is ultimately about sharing and communication. This book
exists so that you can better understand the underlying mechanisms of network
programming and make better contributions to its cause.

My StoryMy Story
I remember my first interaction with the world of sockets. It wasn't pretty.

wwtcps | 11



As a web developer I had experience integrating with all kinds of HTTP APIs. I was
accustomed to working with high-level concepts like REST & JSON.

Then I had to integrate with a domain registrar API.

I got a hold of the API documentation and was shocked. They wanted me to open a TCP
socket on some private host name at some random port. This didn't work anything like
the Twitter API!

Not only were they asking for a TCP socket, but they didn't encode data as JSON, or
even XML. They had their own line protocol I had to adhere to. I had to send a very
specifically formatted line of text over the socket, then send an empty line, then key-
value pairs for the arguments, followed by two empty lines to show the request was
done.

Then I had to read back a response in the same way. I was thinking "What in the...".

I showed this to a co-worker and he shared my trepidation. He had never worked with
an API like this. He quickly warned me: "I've only ever used sockets in C. You have to be
careful. Make sure you always close it before exiting otherwise it can stay open forever.
They're hard to close once the program exits".

What?! Open forever? Protocols? Ports? I was flabbergasted.

Then another co-worker took a look and said "Really? You don't know how to work with
sockets? You do know that you're opening a socket every time you read a web page,
right? You should really know how this works."

I took that as a challenge. It was tough to wrap my head around the concepts at first,
but I kept trying. I made lots of mistakes, but ultimately completed the integration. I

wwtcps | 12



think I'm a better programmer for it. It gave me a better understanding of the
technology that my work depends upon. It's a good feeling.

With this book I hope to spare you some of that pain I felt when I was introduced to
sockets, while still bringing you the sweet clarity that comes with having a deep
understanding of your technology stack.

Who is This Book For?Who is This Book For?
The intended audience is Ruby developers on Unix or Unix-like systems.

The book assumes that you know Ruby and makes no attempts to teach Ruby basics. It
assumes little to no knowledge of network programming concepts. It starts right at the
fundamentals.

All of the example code is written using Ruby 1.9 and is not tested on earlier versions.

What to ExpectWhat to Expect
This book is divided into three main parts.

The first part gives an introduction to the primitives of socket programming. You'll
learn how to create sockets, connect them together, and share data.

The second part of the book covers more advanced topics in socket programming. These
are the kinds of things you'll need once you get past doing 'Hello world'-style socket
programming.

wwtcps | 13



The third part applies everything from the first two parts of the book in a 'real-world'
scenario. This section goes past just sockets and shows you how to apply concurrency to
your network programs. Several architecture patterns are implemented and compared
to solve the same problem.

The Berkeley Sockets APIThe Berkeley Sockets API
The main focus of this book will be the Berkeley Sockets API and its usage. The Berkeley
Sockets API first appeared with version 4.2 of the BSD operating system in 1983. It was
the first implementation of the then newly proposed Transport Control Protocol (TCP).

The Berkeley Sockets API has truly stood the test of time. The API that you'll work with
in this book and the one supported in most modern programming languages is the
same API that was revealed to the world in 1983.

Surely one key reason why the Berkeley Sockets API has stood the test of time: You canYou can
use sockets without having to know the details of the underlying protocoluse sockets without having to know the details of the underlying protocol. This point is
key and will get more attention later.

The Berkeley Sockets API is a programming API that operates at a level above the
actually protocol implementation itself. It's concerned with stuff like connecting two
endpoints and sharing data between them rather than marshalling packets and
sequence numbering.

The de facto Berkeley Sockets API implementation is written in C, but almost any
modern language written in C will include bindings to that lower-level interface. As
such, there are many places in the book where I've gone to the effort of making the
knowledge portable.

wwtcps | 14



That is to say, rather than just showing the wrapper classes that Ruby offers around
socket APIs I always start by showing the lower level API, followed by Ruby's wrapper
classes. This keeps your knowledge portable.

When you're working in a language other than Ruby you'll still be able to apply the
fundamentals you learn here and use the lower level constructs to build what you need.

What's Not Covered?What's Not Covered?
I mentioned in the last chapter that one of the strengths of the Berkeley Sockets API is
that you don't need to know anything about the underlying protocol in order to use it.
This book heartily embraces that.

Some other networking books focus on explaining the underlying protocol and its
intricacies, even going as far as to re-implement TCP on top of another protocol like
UDP or raw sockets. This book won't go there.

It will embrace the notion that the Berkeley Sockets API can be used without knowing
the underlying protocol implementation. It will focus on how to use the API to do
interesting things and will keep as much focus as possible on getting real work done.

However, there are times, when making performance optimizations, for example, when
a lack of understanding of the underlying protocol will prevent you from using a
feature properly. In these cases I'll yield and explain the necessary bits so that the
concepts are understood.

Back to protocols. I've already said that TCP won't be covered in detail. The same is true
for application protocols like HTTP, FTP, etc.. We'll look at some of these as examples,
but not in detail.

wwtcps | 15



If you're really interested in learning about the protocol itself I'd recommend Stevens'
TCP/IP Illustrated 2.

netcatnetcat
There are several places in this book where the netcat tool is used to create arbitrary
connections to test the various programs we're writing. netcat (usually nc in your
terminal) is a Unix utility for creating arbitrary TCP (and UDP) connections and listens.
It's a useful tool to have in your toolbox when working with sockets.

If you're on a Unix system it's likely already installed and you should have no issues
with the examples.

AcknowledgementsAcknowledgements
First and foremost I have to thank my family: Sara and Inara. They didn't write the text,
but they contributed in their own unique ways. From giving me the time and space to
work on this, to reminding me what's important, if it weren't for them this book
certainly wouldn't exist.

Next up are my awesome reviewers. These people read drafts of the book and together
provided pages and pages of insights and comments that improved this book. Big
thanks to Jonathan Rudenberg, Henrik Nyh, Cody Fauser, Julien Boyer, Joshua Wehner,
Mike Perham, Camilo Lopez, Pat Shaughnessy, Trevor Bramble, Ryan LeCompte, Joe
James, Michael Bernstein, Jesus Castello, and Pradeepto Bhattacharya.

2. http://www.amazon.com/TCP-Illustrated-Vol-Addison-Wesley-Professional/dp/0201633469

wwtcps | 16

http://www.amazon.com/TCP-Illustrated-Vol-Addison-Wesley-Professional/dp/0201633469

	Releases
	Introduction
	My Story
	Who is This Book For?
	What to Expect
	The Berkeley Sockets API
	What's Not Covered?
	netcat
	Acknowledgements

	Your First Socket
	Ruby's Socket Library
	Creating Your First Socket
	Understanding Endpoints
	Loopbacks
	IPv6
	Ports
	Creating Your Second Socket
	Docs
	System Calls From This Chapter

	Establishing Connections
	Server Lifecycle
	Servers Bind
	What port should I bind to?
	What address should I bind to?

	Servers Listen
	The Listen Queue
	How big should the listen queue be?

	Servers Accept
	Accept is blocking
	Accept returns an Array
	Connection Class
	File Descriptors
	Connection Addresses
	The Accept Loop

	Servers Close
	Closing on Exit
	Different Kinds of Closing

	Ruby Wrappers
	Server Construction
	Connection Handling
	Wrapping it all into one

	System Calls From This Chapter

	Client Lifecycle
	Clients Bind
	Clients Connect
	Connect Gone Awry

	Ruby Wrappers
	Client Construction

	System Calls From This Chapter

	Exchanging Data
	Streams

	Sockets Can Read
	Simple Reads
	It's Never That Simple
	Read Length
	Blocking Nature
	The EOF Event
	Partial Reads
	System Calls From This Chapter

	Sockets Can Write
	System Calls From This Chapter

	Buffering
	Write Buffers
	How Much to Write?
	Read Buffers
	How Much to Read?

	Our First Client/Server
	The Server
	The Client
	Put It All Together
	Thoughts

	Socket Options
	SO_TYPE
	SO_REUSE_ADDR
	System Calls From This chapter

	Non-blocking IO
	Non-blocking Reads
	Non-blocking Writes
	Non-blocking Accept
	Non-blocking Connect

	Multiplexing Connections
	select(2)
	Events Other Than Read/Write
	EOF
	Accept
	Connect

	High Performance Multiplexing

	Nagle's algorithm
	Framing Messages
	Using newlines
	Using A Content Length

	Timeouts
	Unusable Options
	IO.select
	Accept Timeout
	Connect Timeout

	DNS Lookups
	MRI and the GIL
	resolv

	SSL Sockets
	Urgent Data
	Sending Urgent Data
	Receiving Urgent Data
	Limits
	Urgent Data and IO.select
	The SO_OOBINLINE Option

	Network Architecture Patterns
	The Muse

	Serial
	Explanation
	Implementation
	Considerations

	Process per connection
	Explanation
	Implementation
	Considerations
	Examples

	Thread per connection
	Explanation
	Implementation
	Considerations
	Examples

	Preforking
	Explanation
	Implementation
	Considerations
	Examples

	Thread Pool
	Overview
	Implementation
	Considerations
	Examples

	Evented (Reactor)
	Overview
	Implementation
	Considerations
	Examples

	Hybrids
	nginx
	Puma
	EventMachine

	Closing Thoughts
	Now you understand socket programming. Build on that foundation by learning to program with Unix processes.


