
wwtcps | 1

Working With TCP Sockets

Copyright (C) 2012 Jesse Storimer.

wwtcps | 2

Chapter 21

Process per connection
This is the first network architecture we'll look at that allows parallel processing of
requests.

ExplanationExplanation
This particular architecture requires very few changes from the serial architecture in
order to add concurrency. The code that accepts connections will remain the same, as
will the code that consumes data from the socket.

The relevant change is that after accepting a connection, the server will fork a child
process whose sole purpose will be the handling of that new connection. The child
process handles the connection, then exits.

wwtcps | 142

Forking BasicsForking Basics

Any time that you start up a program using $ ruby myapp.rb , for instance, a new
Ruby process is spawned that loads and executes your code.

If you do a fork as part of your program you can actually create a new process at
runtime. The effect of a fork is that you end up with two processes that are exact
copies. The newly created process is considered the child; the original
considered the parent. Once the fork is complete then you have two processes
that can go their separate ways and do whatever they need to do.

This is tremendously useful because it means we can, for instance, accept a
connection, fork a child process, and that child process automatically gets a copy
of the client connection. Hence there's no extra setup, sharing of data, or locking
required to start parallel processing.

Let's make the flow of events crystal clear:

1. A connection comes in to the server.

2. The main server process accepts the connection.

3. It forks a new child process which is an exact copy of the server process.

4. The child process continues to handle its connection in parallel while the server
process goes back to step #1.

wwtcps | 143

Thanks to kernel semantics these processes are running in parallel. While the new
child process is handling the connection, the original parent process can continue to
accept new connections and fork new child processes to handle them.

At any given time there will always be a single parent process waiting to accept
connections. There may also be multiple child processes handling individual
connections.

wwtcps | 144

ImplementationImplementation

wwtcps | 145

./code/ftp/arch/process_per_connection.rb
require 'socket'
require_relative '../command_handler'

module FTP
class ProcessPerConnection

CRLF = "\r\n"

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def gets
@client.gets(CRLF)

end

def respond(message)
@client.write(message)
@client.write(CRLF)

end

def run
loop do

@client = @control_socket.accept

pid = fork do
respond "220 OHAI"

handler = CommandHandler.new(self)

loop do
request = gets

wwtcps | 146

if request
respond handler.handle(request)

else
@client.close
break

end
end

end

Process.detach(pid)
end

end
end

end

server = FTP::ProcessPerConnection.new(4481)
server.run

As you can see the majority of the code remains the same. The main difference is that
the inner loop is wrapped in a call to fork .

./code/ftp/arch/process_per_connection.rb
@client = @control_socket.accept

pid = fork do
respond "220 OHAI"

handler = CommandHandler.new(self)

Immediately after accept ing a connection the server process calls fork with a block. The
new child process will evaluate that block and then exit.

wwtcps | 147

This means that each incoming connection gets handled by a single, independent
process. The parent process will not evaluate the code in the block; it just continues
along the execution path.

./code/ftp/arch/process_per_connection.rb
Process.detach(pid)

Notice the call to Process.detach at the end? After a process exits it isn't fully cleaned up
until its parent asks for its exit status. In this case we don't care what the child exit
status is, so we can detach from the process early on to ensure that its resources are
fully cleaned up when it exits 2.

ConsiderationsConsiderations
This pattern has several advantages. The first is simplicity. Notice that very little extra
code was required on top of the serial implementation in order to be able to service
multiple clients in parallel.

A second advantage is that this kind of parallelism requires very little cognitive
overhead. I mentioned earlier that fork effectively provides copies of everything a child
process might need. There are no edge cases to look out for, no locks or race conditions,
just simple separation.

An obvious disadvantage to this pattern is that there's no upper bound on the number
of child processes it's willing to fork . For a small number of clients this won't be an
issue, but if you're spawning dozens or hundreds of processes then your system will

2. If you want to learn more about process spawning and zombie processes then you should get my other book Working With
Unix Processes.

wwtcps | 148

http://workingwithunixprocesses.com
http://workingwithunixprocesses.com

quickly fall over. This concern can be solved using the Preforking pattern discussed a
few chapters from now.

Depending on your operating environment, the very fact that it uses fork might be an
issue. fork is only supported on Unix systems. This means it's not supported on Windows
or JRuby.

Another concern is the issue of using processes versus using threads. I'll save this
discussion for the next chapter when we actually get to see threads.

ExamplesExamples
• shotgun

• inetd

wwtcps | 149

https://github.com/rtomayko/shotgun
http://en.wikipedia.org/wiki/Inetd

	Releases
	Introduction
	My Story
	Who is This Book For?
	What to Expect
	The Berkeley Sockets API
	What's Not Covered?
	netcat
	Acknowledgements

	Your First Socket
	Ruby's Socket Library
	Creating Your First Socket
	Understanding Endpoints
	Loopbacks
	IPv6
	Ports
	Creating Your Second Socket
	Docs
	System Calls From This Chapter

	Establishing Connections
	Server Lifecycle
	Servers Bind
	What port should I bind to?
	What address should I bind to?

	Servers Listen
	The Listen Queue
	How big should the listen queue be?

	Servers Accept
	Accept is blocking
	Accept returns an Array
	Connection Class
	File Descriptors
	Connection Addresses
	The Accept Loop

	Servers Close
	Closing on Exit
	Different Kinds of Closing

	Ruby Wrappers
	Server Construction
	Connection Handling
	Wrapping it all into one

	System Calls From This Chapter

	Client Lifecycle
	Clients Bind
	Clients Connect
	Connect Gone Awry

	Ruby Wrappers
	Client Construction

	System Calls From This Chapter

	Exchanging Data
	Streams

	Sockets Can Read
	Simple Reads
	It's Never That Simple
	Read Length
	Blocking Nature
	The EOF Event
	Partial Reads
	System Calls From This Chapter

	Sockets Can Write
	System Calls From This Chapter

	Buffering
	Write Buffers
	How Much to Write?
	Read Buffers
	How Much to Read?

	Our First Client/Server
	The Server
	The Client
	Put It All Together
	Thoughts

	Socket Options
	SO_TYPE
	SO_REUSE_ADDR
	System Calls From This chapter

	Non-blocking IO
	Non-blocking Reads
	Non-blocking Writes
	Non-blocking Accept
	Non-blocking Connect

	Multiplexing Connections
	select(2)
	Events Other Than Read/Write
	EOF
	Accept
	Connect

	High Performance Multiplexing

	Nagle's algorithm
	Framing Messages
	Using newlines
	Using A Content Length

	Timeouts
	Unusable Options
	IO.select
	Accept Timeout
	Connect Timeout

	DNS Lookups
	MRI and the GIL
	resolv

	SSL Sockets
	Urgent Data
	Sending Urgent Data
	Receiving Urgent Data
	Limits
	Urgent Data and IO.select
	The SO_OOBINLINE Option

	Network Architecture Patterns
	The Muse

	Serial
	Explanation
	Implementation
	Considerations

	Process per connection
	Explanation
	Implementation
	Considerations
	Examples

	Thread per connection
	Explanation
	Implementation
	Considerations
	Examples

	Preforking
	Explanation
	Implementation
	Considerations
	Examples

	Thread Pool
	Overview
	Implementation
	Considerations
	Examples

	Evented (Reactor)
	Overview
	Implementation
	Considerations
	Examples

	Hybrids
	nginx
	Puma
	EventMachine

	Closing Thoughts
	Now you understand socket programming. Build on that foundation by learning to program with Unix processes.

