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Chapter 21

Process per connection
This is the first network architecture we'll look at that allows parallel processing of
requests.

ExplanationExplanation
This particular architecture requires very few changes from the serial architecture in
order to add concurrency. The code that accepts connections will remain the same, as
will the code that consumes data from the socket.

The relevant change is that after accepting a connection, the server will fork a child
process whose sole purpose will be the handling of that new connection. The child
process handles the connection, then exits.
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Forking BasicsForking Basics

Any time that you start up a program using $ ruby myapp.rb , for instance, a new
Ruby process is spawned that loads and executes your code.

If you do a fork as part of your program you can actually create a new process at
runtime. The effect of a fork is that you end up with two processes that are exact
copies. The newly created process is considered the child; the original
considered the parent. Once the fork is complete then you have two processes
that can go their separate ways and do whatever they need to do.

This is tremendously useful because it means we can, for instance, accept a
connection, fork a child process, and that child process automatically gets a copy
of the client connection. Hence there's no extra setup, sharing of data, or locking
required to start parallel processing.

Let's make the flow of events crystal clear:

1. A connection comes in to the server.

2. The main server process accepts the connection.

3. It forks a new child process which is an exact copy of the server process.

4. The child process continues to handle its connection in parallel while the server
process goes back to step #1.
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Thanks to kernel semantics these processes are running in parallel. While the new
child process is handling the connection, the original parent process can continue to
accept new connections and fork new child processes to handle them.

At any given time there will always be a single parent process waiting to accept
connections. There may also be multiple child processes handling individual
connections.

wwtcps | 144



ImplementationImplementation
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# ./code/ftp/arch/process_per_connection.rb
require 'socket'
require_relative '../command_handler'

module FTP
class ProcessPerConnection

CRLF = "\r\n"

def initialize(port = 21)
@control_socket = TCPServer.new(port)
trap(:INT) { exit }

end

def gets
@client.gets(CRLF)

end

def respond(message)
@client.write(message)
@client.write(CRLF)

end

def run
loop do

@client = @control_socket.accept

pid = fork do
respond "220 OHAI"

handler = CommandHandler.new(self)

loop do
request = gets
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if request
respond handler.handle(request)

else
@client.close
break

end
end

end

Process.detach(pid)
end

end
end

end

server = FTP::ProcessPerConnection.new(4481)
server.run

As you can see the majority of the code remains the same. The main difference is that
the inner loop is wrapped in a call to fork .

# ./code/ftp/arch/process_per_connection.rb
@client = @control_socket.accept

pid = fork do
respond "220 OHAI"

handler = CommandHandler.new(self)

Immediately after accept ing a connection the server process calls fork with a block. The
new child process will evaluate that block and then exit.
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This means that each incoming connection gets handled by a single, independent
process. The parent process will not evaluate the code in the block; it just continues
along the execution path.

# ./code/ftp/arch/process_per_connection.rb
Process.detach(pid)

Notice the call to Process.detach at the end? After a process exits it isn't fully cleaned up
until its parent asks for its exit status. In this case we don't care what the child exit
status is, so we can detach from the process early on to ensure that its resources are
fully cleaned up when it exits 2.

ConsiderationsConsiderations
This pattern has several advantages. The first is simplicity. Notice that very little extra
code was required on top of the serial implementation in order to be able to service
multiple clients in parallel.

A second advantage is that this kind of parallelism requires very little cognitive
overhead. I mentioned earlier that fork effectively provides copies of everything a child
process might need. There are no edge cases to look out for, no locks or race conditions,
just simple separation.

An obvious disadvantage to this pattern is that there's no upper bound on the number
of child processes it's willing to fork . For a small number of clients this won't be an
issue, but if you're spawning dozens or hundreds of processes then your system will

2. If you want to learn more about process spawning and zombie processes then you should get my other book Working With
Unix Processes.
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quickly fall over. This concern can be solved using the Preforking pattern discussed a
few chapters from now.

Depending on your operating environment, the very fact that it uses fork might be an
issue. fork is only supported on Unix systems. This means it's not supported on Windows
or JRuby.

Another concern is the issue of using processes versus using threads. I'll save this
discussion for the next chapter when we actually get to see threads.

ExamplesExamples
• shotgun

• inetd
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