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Chapter 3

Server Lifecycle
A server socket listens for connections rather than initiating them. The typical lifecycle
looks something like this:

1. create

2. bind

3. listen

4. accept

5. close

We covered #1 already; now we'll continue on with the rest of the list.

Servers BindServers Bind
The second step in the lifecycle of a server socket is to bindbind to a port where it will listen
for connections.
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# ./code/snippets/bind.rb
require 'socket'

# First, create a new TCP socket.
socket = Socket.new(:INET, :STREAM)

# Create a C struct to hold the address for listening.
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')

# Bind to it.
socket.bind(addr)

This is a low-level implementation that shows how to bind a TCP socket to a local port.
In fact, it's almost identical to the C code you would write to accomplish the same thing.

This particular socket is now bound to port 4481 on the local host. Other sockets will not
be able to bind to this port; doing so would result in an Errno::EADDRINUSE exception
being raised. Client sockets will be able to connect to this socket using this port
number, once a few more steps have been completed.

If you run that code block you'll notice that it exits immediately. The code works but
doesn't yet do enough to actually listen for a connection. Keep reading to see how to put
the server in listen mode.

To recap, a server binds to a specific, agreed-upon port number which a client socket
can then connect to.

Of course, Ruby provides syntactic sugar so that you never have to actually use
Socket.pack_sockaddr_in or Socket#bind directly. But before learning the syntactic sugar it's
important that we see how to do things the hard way.
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What port should I bind to?

This is an important consideration for anyone writing a server. Should you pick a
random port number? How can you tell if some other program has already 'claimed' a
port as their own?

In terms of what's possible, any port from 1-65,535 can be used, but there are important
conventions to consider before picking a port.

The first rule: don't try to use a port in the 0-1024 rangedon't try to use a port in the 0-1024 range. These are considered 'well-
known' ports and are reserved for system use. A few examples: HTTP traffic defaults to
port 80, SMTP traffic defaults to port 25, rsync defaults to port 873. Binding to these
ports typically requires root access.

The second rule: don't use a port in the 49,000-65,535 rangedon't use a port in the 49,000-65,535 range. These are the ephemeral
ports. They're typically used by services that don't operate on a predefined port number
but need ports for temporary purposes. They're also an integral part of the connection
negotiation process we'll see in the next section. Picking a port in this range might
cause issues for some of your users.

Besides that, any port from 1025-48,999 is fair game for your usesany port from 1025-48,999 is fair game for your uses. If you're planning on
claiming one of those ports as the port for your server then you should have a look at
the IANA list of registered ports 2 and make sure that your choice doesn't conflict with
some other popular server out there.

2. https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
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What address should I bind to?

I bound to 0.0.0.0 in the above example, but what's the difference when I bind to 127.0.0.1 ?
Or 1.2.3.4 ? The answer has to do with interfaces.

Earlier I mentioned that your system has a loopback interface represented with the IP
address 127.0.0.1 . It also has a physical, hardware-backed interface represented by a
different IP address (let's pretend it's 192.168.0.5 ). When you bind to a specific interface,
represented by its IP address, your socket is only listening on that interface. It will
ignore the others.

If you bind to 127.0.0.1 then your socket will only be listening on the loopback interface.
In this case, only connections made to localhost or 127.0.0.1 will be routed to your server
socket. Since this interface is only available locally, no external connections will be
allowed.

If you bind to 192.168.0.5 , in this example, then your socket will only be listening on that
interface. Any clients that can address that interface will be listened for, but any
connections made on localhost will not be routed to that server socket.

If you want to listen on all interfaces then you can use 0.0.0.0 . This will bind to any
available interface, loopback or otherwise. Most of the time, this is what you want.
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# ./code/snippets/loopback_binding.rb
require 'socket'

# This socket will bind to the loopback interface and will
# only be listening for clients from localhost.
local_socket = Socket.new(:INET, :STREAM)
local_addr = Socket.pack_sockaddr_in(4481, '127.0.0.1')
local_socket.bind(local_addr)

# This socket will bind to any of the known interfaces and
# will be listening for any client that can route messages
# to it.
any_socket = Socket.new(:INET, :STREAM)
any_addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
any_socket.bind(any_addr)

# This socket attempts to bind to an unkown interface
# and raises Errno::EADDRNOTAVAIL.
error_socket = Socket.new(:INET, :STREAM)
error_addr = Socket.pack_sockaddr_in(4481, '1.2.3.4')
error_socket.bind(error_addr)

Servers ListenServers Listen
After creating a socket, and binding to a port, the socket needs to be told to listen for
incoming connections.
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# ./code/snippets/listen.rb
require 'socket'

# Create a socket and bind it to port 4481.
socket = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
socket.bind(addr)

# Tell it to listen for incoming connections.
socket.listen(5)

The only addition to the code from the last chapter is a call to listen on the socket.

If you run that code snippet it still exits immediately. There's one more step in the
lifecycle of a server socket required before it can process connections. That's covered in
the next chapter. First, more about listen .

The Listen Queue

You may have noticed that we passed an integer argument to the listen method. This
number represents the maximum number of pending connections your server socket is
willing to tolerate. This list of pending connections is called the listen queuethe listen queue.

Let's say that your server is busy processing a client connection, when any new client
connections arrive they'll be put into the listen queue. If a new client connection arrives
and the listen queue is full then the client will raise Errno::ECONNREFUSED .
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