
wwtcps | 1

Working With TCP Sockets

Copyright (C) 2012 Jesse Storimer.

wwtcps | 2

Chapter 3

Server Lifecycle
A server socket listens for connections rather than initiating them. The typical lifecycle
looks something like this:

1. create

2. bind

3. listen

4. accept

5. close

We covered #1 already; now we'll continue on with the rest of the list.

Servers BindServers Bind
The second step in the lifecycle of a server socket is to bindbind to a port where it will listen
for connections.

wwtcps | 26

./code/snippets/bind.rb
require 'socket'

First, create a new TCP socket.
socket = Socket.new(:INET, :STREAM)

Create a C struct to hold the address for listening.
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')

Bind to it.
socket.bind(addr)

This is a low-level implementation that shows how to bind a TCP socket to a local port.
In fact, it's almost identical to the C code you would write to accomplish the same thing.

This particular socket is now bound to port 4481 on the local host. Other sockets will not
be able to bind to this port; doing so would result in an Errno::EADDRINUSE exception
being raised. Client sockets will be able to connect to this socket using this port
number, once a few more steps have been completed.

If you run that code block you'll notice that it exits immediately. The code works but
doesn't yet do enough to actually listen for a connection. Keep reading to see how to put
the server in listen mode.

To recap, a server binds to a specific, agreed-upon port number which a client socket
can then connect to.

Of course, Ruby provides syntactic sugar so that you never have to actually use
Socket.pack_sockaddr_in or Socket#bind directly. But before learning the syntactic sugar it's
important that we see how to do things the hard way.

wwtcps | 27

What port should I bind to?

This is an important consideration for anyone writing a server. Should you pick a
random port number? How can you tell if some other program has already 'claimed' a
port as their own?

In terms of what's possible, any port from 1-65,535 can be used, but there are important
conventions to consider before picking a port.

The first rule: don't try to use a port in the 0-1024 rangedon't try to use a port in the 0-1024 range. These are considered 'well-
known' ports and are reserved for system use. A few examples: HTTP traffic defaults to
port 80, SMTP traffic defaults to port 25, rsync defaults to port 873. Binding to these
ports typically requires root access.

The second rule: don't use a port in the 49,000-65,535 rangedon't use a port in the 49,000-65,535 range. These are the ephemeral
ports. They're typically used by services that don't operate on a predefined port number
but need ports for temporary purposes. They're also an integral part of the connection
negotiation process we'll see in the next section. Picking a port in this range might
cause issues for some of your users.

Besides that, any port from 1025-48,999 is fair game for your usesany port from 1025-48,999 is fair game for your uses. If you're planning on
claiming one of those ports as the port for your server then you should have a look at
the IANA list of registered ports 2 and make sure that your choice doesn't conflict with
some other popular server out there.

2. https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

wwtcps | 28

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

What address should I bind to?

I bound to 0.0.0.0 in the above example, but what's the difference when I bind to 127.0.0.1 ?
Or 1.2.3.4 ? The answer has to do with interfaces.

Earlier I mentioned that your system has a loopback interface represented with the IP
address 127.0.0.1 . It also has a physical, hardware-backed interface represented by a
different IP address (let's pretend it's 192.168.0.5). When you bind to a specific interface,
represented by its IP address, your socket is only listening on that interface. It will
ignore the others.

If you bind to 127.0.0.1 then your socket will only be listening on the loopback interface.
In this case, only connections made to localhost or 127.0.0.1 will be routed to your server
socket. Since this interface is only available locally, no external connections will be
allowed.

If you bind to 192.168.0.5 , in this example, then your socket will only be listening on that
interface. Any clients that can address that interface will be listened for, but any
connections made on localhost will not be routed to that server socket.

If you want to listen on all interfaces then you can use 0.0.0.0 . This will bind to any
available interface, loopback or otherwise. Most of the time, this is what you want.

wwtcps | 29

./code/snippets/loopback_binding.rb
require 'socket'

This socket will bind to the loopback interface and will
only be listening for clients from localhost.
local_socket = Socket.new(:INET, :STREAM)
local_addr = Socket.pack_sockaddr_in(4481, '127.0.0.1')
local_socket.bind(local_addr)

This socket will bind to any of the known interfaces and
will be listening for any client that can route messages
to it.
any_socket = Socket.new(:INET, :STREAM)
any_addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
any_socket.bind(any_addr)

This socket attempts to bind to an unkown interface
and raises Errno::EADDRNOTAVAIL.
error_socket = Socket.new(:INET, :STREAM)
error_addr = Socket.pack_sockaddr_in(4481, '1.2.3.4')
error_socket.bind(error_addr)

Servers ListenServers Listen
After creating a socket, and binding to a port, the socket needs to be told to listen for
incoming connections.

wwtcps | 30

./code/snippets/listen.rb
require 'socket'

Create a socket and bind it to port 4481.
socket = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
socket.bind(addr)

Tell it to listen for incoming connections.
socket.listen(5)

The only addition to the code from the last chapter is a call to listen on the socket.

If you run that code snippet it still exits immediately. There's one more step in the
lifecycle of a server socket required before it can process connections. That's covered in
the next chapter. First, more about listen .

The Listen Queue

You may have noticed that we passed an integer argument to the listen method. This
number represents the maximum number of pending connections your server socket is
willing to tolerate. This list of pending connections is called the listen queuethe listen queue.

Let's say that your server is busy processing a client connection, when any new client
connections arrive they'll be put into the listen queue. If a new client connection arrives
and the listen queue is full then the client will raise Errno::ECONNREFUSED .

wwtcps | 31

	Releases
	Introduction
	My Story
	Who is This Book For?
	What to Expect
	The Berkeley Sockets API
	What's Not Covered?
	netcat
	Acknowledgements

	Your First Socket
	Ruby's Socket Library
	Creating Your First Socket
	Understanding Endpoints
	Loopbacks
	IPv6
	Ports
	Creating Your Second Socket
	Docs
	System Calls From This Chapter

	Establishing Connections
	Server Lifecycle
	Servers Bind
	What port should I bind to?
	What address should I bind to?

	Servers Listen
	The Listen Queue
	How big should the listen queue be?

	Servers Accept
	Accept is blocking
	Accept returns an Array
	Connection Class
	File Descriptors
	Connection Addresses
	The Accept Loop

	Servers Close
	Closing on Exit
	Different Kinds of Closing

	Ruby Wrappers
	Server Construction
	Connection Handling
	Wrapping it all into one

	System Calls From This Chapter

	Client Lifecycle
	Clients Bind
	Clients Connect
	Connect Gone Awry

	Ruby Wrappers
	Client Construction

	System Calls From This Chapter

	Exchanging Data
	Streams

	Sockets Can Read
	Simple Reads
	It's Never That Simple
	Read Length
	Blocking Nature
	The EOF Event
	Partial Reads
	System Calls From This Chapter

	Sockets Can Write
	System Calls From This Chapter

	Buffering
	Write Buffers
	How Much to Write?
	Read Buffers
	How Much to Read?

	Our First Client/Server
	The Server
	The Client
	Put It All Together
	Thoughts

	Socket Options
	SO_TYPE
	SO_REUSE_ADDR
	System Calls From This chapter

	Non-blocking IO
	Non-blocking Reads
	Non-blocking Writes
	Non-blocking Accept
	Non-blocking Connect

	Multiplexing Connections
	select(2)
	Events Other Than Read/Write
	EOF
	Accept
	Connect

	High Performance Multiplexing

	Nagle's algorithm
	Framing Messages
	Using newlines
	Using A Content Length

	Timeouts
	Unusable Options
	IO.select
	Accept Timeout
	Connect Timeout

	DNS Lookups
	MRI and the GIL
	resolv

	SSL Sockets
	Urgent Data
	Sending Urgent Data
	Receiving Urgent Data
	Limits
	Urgent Data and IO.select
	The SO_OOBINLINE Option

	Network Architecture Patterns
	The Muse

	Serial
	Explanation
	Implementation
	Considerations

	Process per connection
	Explanation
	Implementation
	Considerations
	Examples

	Thread per connection
	Explanation
	Implementation
	Considerations
	Examples

	Preforking
	Explanation
	Implementation
	Considerations
	Examples

	Thread Pool
	Overview
	Implementation
	Considerations
	Examples

	Evented (Reactor)
	Overview
	Implementation
	Considerations
	Examples

	Hybrids
	nginx
	Puma
	EventMachine

	Closing Thoughts
	Now you understand socket programming. Build on that foundation by learning to program with Unix processes.

