


Working With Ruby Threads

Copyright (C) 2013 Jesse Storimer.

This book is dedicated to Sara, Inara, and Ora, who make it all worthwhile.



Chapter 4

Concurrent != Parallel

I hinted in previous chapters that threads provide a concurrency mechanism, one
capable of utilizing multi-core systems.

A sensible question following this might be:

So multiple threads will be running my code in parallel, right?

Before I can answer that question, I need to clear up a common misunderstanding:
concurrent and parallel are not the same thing.

Keeping that in mind, I can rephrase your question into two more sensible questions:

1. Do multiple threads run your code concurrently? Yes.

2. Do multiple threads run your code in parallel? Maybe.

Now I'll attempt to explain the difference. Since we're all programmers here, I'll use a
programmer at work as an example.

wwrt | 38



An illustrative example

Imagine you're a programmer working for an agency. They have two projects that
need to be completed. Both will require one full day of programmer time. There are
(at least) three ways that this can be accomplished.

1. You could complete Project A today, then complete Project B tomorrow.

2. You could work on Project A for a few hours this morning, then switch to
Project B for a few hours this afternoon, and then do the same thing
tomorrow. Both projects will be finished at the end of the second day.

3. Your agency could hire another programmer. He could work on Project B and
you could work on Project A. Both projects will be finished at the end of the
first day.

This example is a bit contrived. It doesn't take into account the time required to switch
projects, ramp-up time, inevitable delays, etc. But let's pretend things work this way
just for the sake of example.

What do these three ways of working represent?

The first way represents working serially. This is the normal path of single-
threaded code. Given two tasks, they will be performed in order, one after another.
Very organized and easy to follow.

The second way represents working concurrently. This represents the path of
multi-threaded code running on a single CPU core. Given two tasks, they will each be

wwrt | 39



performed at the same time, inching forward bit by bit. In this case there's just one
programmer, or CPU, and the tasks compete to get access to this valuable resource.
Otherwise, their work won't progress.

This way nicely illustrates that concurrent, multi-threaded code doesn't necessarily run
faster than single-threaded code. In this case the tasks aren't being accomplished any
quicker; they're just being organized differently.

The third way represents working in parallel. This represents the path of multi-
threaded code running on a multi-core CPU. Given two tasks, they will be performed
simultaneously, completing in half the time. Notice the subtle difference between #2
and #3. Both are concurrent, but only #3 is parallel.

The way I've explained it, #3 almost looks like two instances of #1 progressing side-by-
side. This is one possible configuration, but it's also possible that as one programmer
gets stuck on an issue, a context switch takes place. In this example, another
programmer might come in to take his place. This preserves the 'inching forward bit
by bit' idea, except now there are sufficient resources to keep the process inching
forward continually.

Notice that more resources are required in order to work in parallel. The idea of one
programmer working on two projects simultaneously, with one hand on each of two
keyboards, for instance, is just as absurd as one CPU core executing two instructions
simultaneously.

wwrt | 40



You can't guarantee anything will be parallel

This last example illustrated that your code can be concurrent without being parallel.
Indeed, all you can do is to organize your code to be concurrent, using multiple
threads, for instance. But making it execute in parallel is out of your hands. That
responsibility is left to the underlying thread scheduler.

For instance, if you're running on a 4-core CPU, and you spawn 4 threads, it's possible,
but unlikely, that your code will all be executed on just one CPU core. That's ultimately
the choice of the thread scheduler. In practice, thread schedulers employ fair
queueing so that all threads are given more-or-less equal access to available
resources, but that cannot be controlled by your code.

The point of all this is to say that when you write multi-threaded code, you have no
guarantee as to the parallelism of the environment that your code will be executed in.
In practice, you should assume that your concurrent code will be running in parallel
because it typically will, but you can't guarantee it!

Given this, multi-threaded code should be referred to as concurrent, rather than
parallel. There's very little you can do from your side of the keyboard to guarantee
that your code will run in parallel. However, by making it concurrent, you enable it
to be parallelized when the underlying system allows it.

This is an important topic to grasp, so if you're still not 100% clear on concurrency
versus parallelism, I highly recommend these two other explanations of the same
conflation:

wwrt | 41



1. Rob Pike describes how concurrency enables parallelism, but they're not the
same thing. Lots of simple diagrams to explain key concepts. link

2. Evan Phoenix describes the difference between concurrency and parallelism
and how it relates to existing Ruby implementations. link

The relevance

I've been saying this is an important concept to grasp. The first reason is so that you
can use the right terms when you're talking about it.

The second reason is that this lays a foundation for understanding the effects of
thread synchronization and locking, which will get more coverage in coming chapters.
Before that, this knowledge will drive your understanding of MRI's infamous GIL.

wwrt | 42


	Releases
	Introduction
	My story
	Why care?
	The promise of multi-threading
	What to expect
	Which version of Ruby is used?

	You're Always in a Thread
	Threads of Execution
	Shared address space
	Many threads of execution

	Native threads
	Non-deterministic context switching
	Context switching in practice

	Why is this so hard?

	Lifecycle of a Thread
	require 'thread'
	Thread.new
	Thread#join
	Thread#join and exceptions

	Thread#value
	Thread#status
	Thread.stop
	Thread.pass
	Avoid Thread#raise
	Avoid Thread#kill
	Supported across implementations

	Concurrent != Parallel
	An illustrative example
	You can't guarantee anything will be parallel
	The relevance

	The GIL and MRI
	The global lock
	An inside look at MRI
	The special case: blocking IO
	Why?
	Misconceptions
	Myth: the GIL guarantees your code will be thread-safe.
	Myth: the GIL prevents concurrency.


	Real Parallel Threading with JRuby and Rubinius
	Proof
	But...don't they need a GIL?

	How Many Threads Are Too Many?
	ALL the threads
	Context Switching

	IO-bound
	CPU-bound
	So... how many should you use?

	Thread safety
	What's really at stake?
	The computer is oblivious
	Is anything thread-safe by default?

	Protecting Data with Mutexes
	Mutual exclusion
	The contract
	Making key operations atomic
	Mutexes and memory visibility
	Mutex performance
	The dreaded deadlock

	Signaling Threads with Condition Variables
	The API by example
	Broadcast

	Thread-safe Data Structures
	Implementing a thread-safe, blocking queue
	Queue, from the standard lib
	Array and Hash
	Immutable data structures

	Writing Thread-safe Code
	Avoid mutating globals
	Even globals can provide thread-safe guarantees
	Anything where there is only one shared instance is a global

	Create more objects, rather than sharing one
	Thread-locals
	Resource pools
	Avoid lazy loading
	Prefer data structures over mutexes
	Finding bugs

	Thread-safety on Rails
	Gem dependencies
	The request is the boundary

	Wrap Your Threads in an Abstraction
	Single level of abstraction
	Actor model

	How Sidekiq Uses Celluloid
	Into the source
	fetch
	assign
	Wrap-up

	Puma's Thread Pool Implementation
	A what now?
	The whole thing
	In bits
	Wrap-up

	Closing
	Ruby concurrency doesn't suck

	Appendix: Atomic Compare-and-set Operations
	Overview
	Code-driven example
	Benchmark
	CAS as a primitive

	Appendix: Thread-safety and Immutability
	Immutable Ruby objects
	Integrating immutability
	Wrap up


