—— with —

RUBY I

THREADS

Jesse Storimer

Working With Ruby Threads

Copyright (C) 2013 Jesse Storimer.

This book is dedicated to Sara, Inara, and Ora, who make it all worthwhile.

Contents

Introduction

......................................

Which version of Rubyisused?,

You're Always in a Thread

Threads of Execution

Shared addressspace

Native threads .

Lifecycle of a Thread

require 'thread'

10
10
11
12
13
14
15
17
17
21
22
27
29

Thread.new 29

Thread#join 30
Thread#value 32
Thread#status 33
Thread.stop 34
Thread.pass 35
Avoid Thread#raise 35
Avoid Thread#kill 37
Supported across implementations L L L 37
Concurrent != Parallel 38
Anillustrativeexample 39
You can't guarantee anything will be parallel 41
Therelevance 42
The GIL and MRI 43
Thegloballock 43
AninsidelookatMRL 44

The special case: blockingIO 46

Misconceptions
Real Parallel Threading with JRuby and Rubinius

Proof e

How Many Threads Are Too Many?
ALLthethreads
IO-bound
CPU-bound
So... how many shouldyouuse?
Thread safety
What'sreallyatstake?
The computerisoblivious
Is anything thread-safe by default?
Protecting Data with Mutexes
Mutual exclusion

The contract

Making key operationsatomic
Mutexes and memory visibility o oo L
Mutex performance.
Thedreaded deadlock
Signaling Threads with Condition Variables
The APIbyexample
Broadcast
Thread-safe Data Structures
Implementing a thread-safe, blocking queue
Queue, fromthestandardlib
Arrayand Hash
Immutable data structures
Writing Thread-safe Code
Avoid mutating globals
Create more objects, rather than sharingone
Thread-locals

Resource pools

Avoid lazy loading

Prefer data structures over mutexes

Findingbugs e
Thread-safety on Rails

Gemdependencies

Therequestistheboundary
Wrap Your Threads in an Abstraction

Single level of abstraction

Actormodel
How Sidekiq Uses Celluloid

Intothesource e

Puma's Thread Pool Implementation
Awhat now?

Thewholething

Closing
Ruby concurrency doesn'tsuck
Appendix: Atomic Compare-and-set Operations
OVEIVIEW . . . o e
Code-drivenexample e
Benchmark
CASasaprimitive
Appendix: Thread-safety and Immutability
Immutable Rubyobjects

Integrating immutability

	Releases
	Introduction
	My story
	Why care?
	The promise of multi-threading
	What to expect
	Which version of Ruby is used?

	You're Always in a Thread
	Threads of Execution
	Shared address space
	Many threads of execution

	Native threads
	Non-deterministic context switching
	Context switching in practice

	Why is this so hard?

	Lifecycle of a Thread
	require 'thread'
	Thread.new
	Thread#join
	Thread#join and exceptions

	Thread#value
	Thread#status
	Thread.stop
	Thread.pass
	Avoid Thread#raise
	Avoid Thread#kill
	Supported across implementations

	Concurrent != Parallel
	An illustrative example
	You can't guarantee anything will be parallel
	The relevance

	The GIL and MRI
	The global lock
	An inside look at MRI
	The special case: blocking IO
	Why?
	Misconceptions
	Myth: the GIL guarantees your code will be thread-safe.
	Myth: the GIL prevents concurrency.

	Real Parallel Threading with JRuby and Rubinius
	Proof
	But...don't they need a GIL?

	How Many Threads Are Too Many?
	ALL the threads
	Context Switching

	IO-bound
	CPU-bound
	So... how many should you use?

	Thread safety
	What's really at stake?
	The computer is oblivious
	Is anything thread-safe by default?

	Protecting Data with Mutexes
	Mutual exclusion
	The contract
	Making key operations atomic
	Mutexes and memory visibility
	Mutex performance
	The dreaded deadlock

	Signaling Threads with Condition Variables
	The API by example
	Broadcast

	Thread-safe Data Structures
	Implementing a thread-safe, blocking queue
	Queue, from the standard lib
	Array and Hash
	Immutable data structures

	Writing Thread-safe Code
	Avoid mutating globals
	Even globals can provide thread-safe guarantees
	Anything where there is only one shared instance is a global

	Create more objects, rather than sharing one
	Thread-locals
	Resource pools
	Avoid lazy loading
	Prefer data structures over mutexes
	Finding bugs

	Thread-safety on Rails
	Gem dependencies
	The request is the boundary

	Wrap Your Threads in an Abstraction
	Single level of abstraction
	Actor model

	How Sidekiq Uses Celluloid
	Into the source
	fetch
	assign
	Wrap-up

	Puma's Thread Pool Implementation
	A what now?
	The whole thing
	In bits
	Wrap-up

	Closing
	Ruby concurrency doesn't suck

	Appendix: Atomic Compare-and-set Operations
	Overview
	Code-driven example
	Benchmark
	CAS as a primitive

	Appendix: Thread-safety and Immutability
	Immutable Ruby objects
	Integrating immutability
	Wrap up

