

Working With Ruby Threads

Copyright (C) 2013 Jesse Storimer.

This book is dedicated to Sara, Inara, and Ora, who make it all worthwhile.

Chapter 0

Introduction

My story

When I joined the Ruby community, I had little understanding of multi-threaded
programming.

At that time, almost everyone was using MRI, the original implementation of Ruby. Its
threading implementation used green threads. I didn't know what this meant, but
people didn't seem to take it too seriously, so I didn't either. At that time, I didn't even
know where to begin asking questions when it came to Ruby concurrency.

I had heard the term 'thread safety,' and I knew it was a generally bad thing, but that
was the extent of my knowledge.

I still remember the moment that I actually became afraid of thread safety. It was
when I read an article1 which pointed out that the ||= operator in Ruby is not thread-
safe. Even though the application I worked on wasn't running in multiple threads, I
was now paranoid about using this operator.

In spite of my trepidation, I just couldn't believe that ||= was inherently unsafe. It was
everywhere in our codebase! It was this trepidation, and the realization that there are

1. http://coderrr.wordpress.com/2009/04/29/is-not-thread-safe-neither-is-hashnew-hk/

wwrt | 10

fundamentals I knew nothing about, that led me to learn about processes, threads,
networking, and all that fun stuff.

In this book, I'll help you through the same trepidation. I'll show you how, in certain
contexts, the ||= operator can be not thread-safe, but you certainly don't need to stop
using it.

Why care?

If you're reading this book on any kind of modern computing device, it 's likely that it
has more than one CPU core. And chances are the device you buy next year will have
more cores than the one you have today.

Unfortunately, just adding more CPU cores doesn't necessarily make all your code run
faster. Your code must be architected to take advantage of multiple CPU cores
using some concurrency mechanism. If you're not doing this, you might as well be
running on ten-year-old hardware.

Operating system processes have been the de facto concurrency mechanism for
decades. With processes, if you want more concurrency, then start more processes!
This has been the norm in the Ruby community for many years.

So, why threads?

wwrt | 11

The promise of multi-threading

The promise of multi-threading has always been cheaper concurrency. Cheaper than
processes, that is.

Spawning a thread incurs much less overhead than spawning a process.

The primary difference between using processes versus threads is the way that
memory is handled. At a high level, processes copy memory, while threads share
memory. This makes process spawning slower than thread spawning, and leads to
processes consuming more resources once running. Overall, threads incur less
overhead than processes.

This smaller overhead means threads can you give more 'units' of concurrency for
the available resources. Of course, this comes with a cost: introducing multiple
threads requires that your code be thread-safe.

Despite the Ruby community's love for process-based solutions, there is a shift
happening. The default MRI implementation has always had, even to this day, a
threading implementation that limits parallel execution. This stifled community
support for a long time.

But more and more people are becoming aware of the promise of multi-threading.
More opportunities, and more choices, are becoming available in the community,
opportunities like higher throughput and more concurrency, while using less
resources. Now's the time to educate yourself and take advantage of these
opportunities.

wwrt | 12

What to expect

In this book I'm providing you with lots of small code samples intended to illustrate
key concepts. Please run them in your own console and play with them. Taking the
examples and then tweaking them to test your hypotheses is a fantastic way to learn.
Look in the included code/ folder for all of the snippets to avoid copy/paste issues.

The first part of the book focuses on basic concurrency-related topics. Where possible,
I attempt to generalize, so that what you learn here can also be applied when you're
programming with other languages or just pondering code in general.

That being said, the primary focus of the book is multi-threaded programming in Ruby.

The second part of the book dives deeper into what the Ruby language offers to
support multi-threaded programming.

The book ends with a hands-on tutorial, where you walk through implementing a
concurrent program using several approaches.

There are no clear dividing lines between these three parts, and there's certainly some
overlap. The goal of the book is to give you the necessary knowledge so that you
can make good decisions about concurrency for your application. This includes
making you comfortable with the idea of multi-threaded programming, dispelling
myths that may be floating around the community, and showing you what tools Ruby
offers to aid you.

wwrt | 13

Which version of Ruby is used?

This book studies three different Ruby language implementations.

1. MRI, version 2.0.0 (all code is also 1.9.3 compatible).

2. JRuby, version 1.7.4.

3. Rubinius, version 2.0.0-rc1.

For JRuby and Rubinius, it's assumed that you're running them in 1.9 language mode.
When relevant, I'll show sample code output from all three implementations.

The reason to include multiple Ruby implementations is that they have very different
stories when it comes to multi-threading, which can lead to differences in behaviour.

wwrt | 14

	Releases
	Introduction
	My story
	Why care?
	The promise of multi-threading
	What to expect
	Which version of Ruby is used?

	You're Always in a Thread
	Threads of Execution
	Shared address space
	Many threads of execution

	Native threads
	Non-deterministic context switching
	Context switching in practice

	Why is this so hard?

	Lifecycle of a Thread
	require 'thread'
	Thread.new
	Thread#join
	Thread#join and exceptions

	Thread#value
	Thread#status
	Thread.stop
	Thread.pass
	Avoid Thread#raise
	Avoid Thread#kill
	Supported across implementations

	Concurrent != Parallel
	An illustrative example
	You can't guarantee anything will be parallel
	The relevance

	The GIL and MRI
	The global lock
	An inside look at MRI
	The special case: blocking IO
	Why?
	Misconceptions
	Myth: the GIL guarantees your code will be thread-safe.
	Myth: the GIL prevents concurrency.

	Real Parallel Threading with JRuby and Rubinius
	Proof
	But...don't they need a GIL?

	How Many Threads Are Too Many?
	ALL the threads
	Context Switching

	IO-bound
	CPU-bound
	So... how many should you use?

	Thread safety
	What's really at stake?
	The computer is oblivious
	Is anything thread-safe by default?

	Protecting Data with Mutexes
	Mutual exclusion
	The contract
	Making key operations atomic
	Mutexes and memory visibility
	Mutex performance
	The dreaded deadlock

	Signaling Threads with Condition Variables
	The API by example
	Broadcast

	Thread-safe Data Structures
	Implementing a thread-safe, blocking queue
	Queue, from the standard lib
	Array and Hash
	Immutable data structures

	Writing Thread-safe Code
	Avoid mutating globals
	Even globals can provide thread-safe guarantees
	Anything where there is only one shared instance is a global

	Create more objects, rather than sharing one
	Thread-locals
	Resource pools
	Avoid lazy loading
	Prefer data structures over mutexes
	Finding bugs

	Thread-safety on Rails
	Gem dependencies
	The request is the boundary

	Wrap Your Threads in an Abstraction
	Single level of abstraction
	Actor model

	How Sidekiq Uses Celluloid
	Into the source
	fetch
	assign
	Wrap-up

	Puma's Thread Pool Implementation
	A what now?
	The whole thing
	In bits
	Wrap-up

	Closing
	Ruby concurrency doesn't suck

	Appendix: Atomic Compare-and-set Operations
	Overview
	Code-driven example
	Benchmark
	CAS as a primitive

	Appendix: Thread-safety and Immutability
	Immutable Ruby objects
	Integrating immutability
	Wrap up

