—— with —

RUBY I

THREADS

Jesse Storimer

Working With Ruby Threads

Copyright (C) 2013 Jesse Storimer.

This book is dedicated to Sara, Inara, and Ora, who make it all worthwhile.

Puma's Thread Pool Implementation

Puma' is a concurrent web server for Rack apps that uses multiple threads for
concurrency. Other popular web servers in the community are backed by multiple
processes, or by a single-threaded event loop, so Puma is really the front-runner when
it comes to multi-threaded servers.

At Puma's multi-threaded core is a thread pool implementation. I'm going to walk you
through the main threaded logic so you can see how a real-world, battle-tested project
handles things.

A what now?

Puma's thread pool is responsible for spawning the worker threads and feeding them
work. The thread pool wraps up all of the multi-threaded concerns so that the rest of
the server is just concerned with networking and the actual domain logic.

The Puma: : ThreadPool is actually a totally generic class, not Puma specific. This makes
it a good study, and it could potentially be extracted into something generally useful.

Once initialized, the pool is responsible for receiving work and feeding it to an
available worker thread. The ThreadPool also has an auto-trimming feature, whereby

1. http://puma.io

wwrt | 146

the number of active threads is kept to a minimum, but more threads can be spawned
during times of high load. Afterwards, the thread pool would be trimmed down to the
minimum again. Note: I edited the example methods slightly to remove this logic, as it
didn't add anything to the discussion.

The whole thing

Here's the whole implementation of the Puma: : ThreadPool#spawn_thread method.
This gets called once for each worker thread to be spawned for the pool. I'll walk
through it section by section.

Just for reference, one instance of this class will spawn many threads. Much like in our
examples, instance variables are shared among multiple threads.

def spawn_thread
@spawned += 1

th = Thread.new do
todo = @todo
block = @block
mutex =
cond = @cond

@mutex
extra = @extra.map { |i| i.new }
while true

work = nil

continue = true

wwrt | 147

mutex.synchronize do
while todo.empty?
if @shutdown
continue = false
break
end

@waiting += 1

cond.wait mutex

@waiting -= 1
end

work = todo.pop if continue
end

break unless continue

block.call(work, =*extra)
end

mutex.synchronize do
@spawned -= 1
@workers.delete th
end
end

@workers << th

th
end

wwrt | 148

In bits

Now you'll see it bit by bit.

def spawn_thread
@spawned += 1

I want to highlight this very first line in the method because it illustrates an important
point that I mentioned in the chapter on Mutexes. This @spawned instance variable is
shared among all the active threads and, as you know, this += operation is not thread-
safe! From what we can see, there's no mutex being used. What gives?

In the source file, there's this very important comment right above this method:

Must be called with @mutex held!

This is a great example of mutexes being opt-in. This method must be called with the
shared emutex held, but it doesn't do any internal checking, so it would be possible to
call this method without a mutex, potentially corrupting the value of @spawned.

Just a good reminder that mutexes only work if callers respect the implicit contract it
offers. Moving on.

th = Thread.new do
todo = @todo
block = @block
mutex = @mutex
cond = @cond

wwrt | 149

extra = @extra.map { |i| i.new }

The first line here spawns a thread that will become part of the pool. This is only part
of the block that's passed to Thread.new.

At first glance, this bit of code looks like it might be assigning local variables so as not
to share references with other threads. If each thread needed to re-assign its mutex,
for instance, it would want to switch to a local reference so as not to affect other
threads.

But the git blame for this bit of code suggests otherwise.? Since this is a hot code path
for Puma, using local variables will slightly improve performance over using instance
variables. The references are never re-assigned by the individual threads, and this
does nothing to prevent the threads sharing references. In this case, the threads must
share the reference to the mutex and condition variable in order for their guarantees
to hold.

These kinds of optimizations are common for web servers, but rare for application
logic.

while true

work = nil
continue = true

Now we get into the real meat of this method.

2. https://github.com/puma/puma/commit/fb4e23d628ad77c7978b67625d0da0e5b41fd 124

wwrt | 150

The first line enters an endless loop. So this thread will execute forever, until it hits its
exit condition further down. We'll see the work and continue variables further down.
They're just initialized here.

mutex.synchronize do
while todo.empty?
if @shutdown
continue = false
break
end

@waiting += 1

cond.wait mutex

@waiting -= 1
end

work = todo.pop if continue
end

OK, that's a big paste. I'll highlight some of the outer constructs, then re-focus on the
inner stuff.

First, all of the code in this block happens inside of the mutex.synchronize call. So
other threads have to wait while the current thread executes this block.

while todo.empty?
if @shutdown
continue = false
break

wwrt | 151

end

@waiting += 1

cond.wait mutex

@waiting -= 1
end

This little block of code came straight out of the one earlier, you're still inside the
mutex here. This block only runs if todo is empty. todo is a shared array that holds
work to be done. If it's empty, that means there's not currently any work to do.

If there's no work to do, this worker thread will check to see if it should shut down. In
that case it will set that continue variable to false and break out of this inner while
loop.

If it doesn't need to shut down, things get more interesting.

First, it increments a global counter saying that it's going to wait. This operation is safe
because the shared mutex is still locked here. Next, it waits on the shared condition
variable. Remember that this releases the mutex and puts the current thread to sleep.
It won't be woken up again until there's some work to do. Since it released the shared
mutex, another thread can go through the same routine.

Also notice that a while loop is used as the outer construct here, rather than an if
statement. Remember that when once signaled by a condition variable, the condition
should be re-checked to ensure that another thread hasn't already processed the
work.

wwrt | 152

Once enough work arrives, this thread will get woken up. As part of being signaled by
the condition variable, it will re-acquire the shared mutex, which once again makes it
safe to decrement the global counter.

work = todo.pop if continue

Now the thread has been awoken, re-acquired the mutex, and found todo to contain
some work, it pops the unit of work from todo. This is the last bit of code still inside
the mutex.synchronize block.

break unless continue

block.call(work, =*extra)
end

This little bit of code is outside the mutex.synchronize block, but now outside the
while loop around the condition variable. If it's time to shut down, this thread will
need to break out of its outer infinite loop. This accomplishes that.

If it's not time to shut down, then this worker thread can process the work to do. In
this case, it simply calls the shared block with the work object that it received. The
block is passed in to the constructor and is the block of code that each worker thread
will perform.

mutex.synchronize do

@spawned -= 1
@workers.delete th

wwrt | 153

end
end

The body of the thread ends with a little housekeeping. Once the thread leaves its
infinite loop, it needs to re-acquire the mutex to remove its reference from some
shared variables.

@workers << th

th

The last two lines are outside the scope of the block passed to Thread.new. So they'll
execute immediately after the thread is spawned. And remember, even here the
mutex is held by the caller of this method!

Here the current thread is added to @workers, then returned.

Wrap-up

This implementation nicely illustrates many of the concepts that were covered in this
book. And as far as abstractions go, Puma does a superb job of isolating the
concurrency-primitive logic from the actual domain logic of the server. I definitely
reccomend checking out how the ThreadPool is used in Puma, and the lack of
threading primitives through the rest of the codebase.

wwrt | 154

Simiarly, I encourage you to check out the other methods in the ThreadPool class,
tracing the flow from initialization, to work units being added to the thread pool, to
work units being processed from the thread pool, all the way to shutdown.

wwrt | 155

	Releases
	Introduction
	My story
	Why care?
	The promise of multi-threading
	What to expect
	Which version of Ruby is used?

	You're Always in a Thread
	Threads of Execution
	Shared address space
	Many threads of execution

	Native threads
	Non-deterministic context switching
	Context switching in practice

	Why is this so hard?

	Lifecycle of a Thread
	require 'thread'
	Thread.new
	Thread#join
	Thread#join and exceptions

	Thread#value
	Thread#status
	Thread.stop
	Thread.pass
	Avoid Thread#raise
	Avoid Thread#kill
	Supported across implementations

	Concurrent != Parallel
	An illustrative example
	You can't guarantee anything will be parallel
	The relevance

	The GIL and MRI
	The global lock
	An inside look at MRI
	The special case: blocking IO
	Why?
	Misconceptions
	Myth: the GIL guarantees your code will be thread-safe.
	Myth: the GIL prevents concurrency.

	Real Parallel Threading with JRuby and Rubinius
	Proof
	But...don't they need a GIL?

	How Many Threads Are Too Many?
	ALL the threads
	Context Switching

	IO-bound
	CPU-bound
	So... how many should you use?

	Thread safety
	What's really at stake?
	The computer is oblivious
	Is anything thread-safe by default?

	Protecting Data with Mutexes
	Mutual exclusion
	The contract
	Making key operations atomic
	Mutexes and memory visibility
	Mutex performance
	The dreaded deadlock

	Signaling Threads with Condition Variables
	The API by example
	Broadcast

	Thread-safe Data Structures
	Implementing a thread-safe, blocking queue
	Queue, from the standard lib
	Array and Hash
	Immutable data structures

	Writing Thread-safe Code
	Avoid mutating globals
	Even globals can provide thread-safe guarantees
	Anything where there is only one shared instance is a global

	Create more objects, rather than sharing one
	Thread-locals
	Resource pools
	Avoid lazy loading
	Prefer data structures over mutexes
	Finding bugs

	Thread-safety on Rails
	Gem dependencies
	The request is the boundary

	Wrap Your Threads in an Abstraction
	Single level of abstraction
	Actor model

	How Sidekiq Uses Celluloid
	Into the source
	fetch
	assign
	Wrap-up

	Puma's Thread Pool Implementation
	A what now?
	The whole thing
	In bits
	Wrap-up

	Closing
	Ruby concurrency doesn't suck

	Appendix: Atomic Compare-and-set Operations
	Overview
	Code-driven example
	Benchmark
	CAS as a primitive

	Appendix: Thread-safety and Immutability
	Immutable Ruby objects
	Integrating immutability
	Wrap up

