
Extracted from:

Crafting Rails Applications
Expert Practices for Everyday Rails Development

This PDF file contains pages extracted from Crafting Rails Applications, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

In this chapter, we’ll see

• Rails extensions and their basic structure

• how to customize the render method to accept custom

options

• Rails rendering stack basics

Chapter 1

Creating our own renderer
Like many web frameworks, Rails uses the MVC architecture pattern

to organize our code. The controller, most of the time, is responsible

for gathering information from our models and sending the data to the

view for rendering. On other occasions, the Model is responsible for

representing itself and then the View does not take part in the request,

as usually happens in XML requests. Those two scenarios can be illus-

trated in the index action below:

class PostsController < ApplicationController

def index

if client_authenticated?

render :xml => Post.all

else

render :template => "shared/not_authenticated", :status => 401

end

end

end

The common interface to render a given model or template is the render

method. Besides knowing how to render a :template or a :file, Rails also

can render raw :text and a few formats like :xml, :json and :js. Although

the default set of options provided by Rails is enough to bootstrap our

applications, we sometimes need to add new options like :pdf or :csv to

the render method.

Prior to Rails 3, there was no public API to add our own option to render

and we needed to resort to methods like alias_method_chain to modify

the rendering stack. Rails 3 changes this by introducing a new API

which we can use to create our own renderers. We’ll explore this API

as we modify the render method to accept :pdf as option and return a

ENGINEX 16

PDF created with Prawn1, a tiny, fast and nimble PDF writer library for

Ruby.

As in most chapters in this book, we’ll develop the code as a Ruby Gem,

making it easy to share the code across different Rails applications.

To bootstrap those gems we will use a tool called Enginex2 developed

specifically for this book. In the same way the rails command generates a

bare application, Enginex provides the enginex command that generates

a bare gem for us.

Let’s do it!

1.1 Enginex

Enginex is a Ruby gem that creates a bare project to be used within

Rails 3 including a Rakefile, Gemfile and a ready-to-run test suite built

on top of a Rails application. Enginex allows us to move from a simple

gem to a Rails::Railtie and then to a Rails::Engine easily, as we will see in

next chapters. Let’s install it:

gem install enginex

After we install Enginex, we are ready to craft our first gem for Rails 3.

Let’s call it pdf_renderer:

enginex pdf_renderer

The command’s output is quite verbose; it tells us everything that is

happening:

STEP 1 Creating gem skeleton

create

create pdf_renderer.gemspec

create Gemfile

create lib/pdf_renderer.rb

create MIT-LICENSE

create Rakefile

create README.rdoc

create test/pdf_renderer_test.rb

create test/integration/navigation_test.rb

create test/support/integration_case.rb

create test/test_helper.rb

create .gitignore

STEP 2 Vendoring Rails application at test/dummy

1. http://github.com/sandal/prawn

2. http://github.com/josevalim/enginex

CLICK HERE to purchase this book now.

http://github.com/sandal/prawn
http://github.com/josevalim/enginex
http://www.pragprog.com/titles/jvrails

ENGINEX 17

create

create README

create .gitignore

create Rakefile

create config.ru

create Gemfile

create app [...]

create config [...]

create db [...]

create doc [...]

create lib [...]

create log [...]

create public [...]

create script [...]

create test [...]

create tmp [...]

create vendor [...]

STEP 3 Configuring Rails application

force test/dummy/config/boot.rb

force test/dummy/config/application.rb

gsub test/dummy/config/environments/test.rb

STEP 4 Removing unneeded files

remove test/dummy/.gitignore

remove test/dummy/db/seeds.rb

remove test/dummy/doc

remove test/dummy/Gemfile

remove test/dummy/lib/tasks

remove test/dummy/public/images/rails.png

remove test/dummy/public/index.html

remove test/dummy/public/robots.txt

remove test/dummy/Rakefile

remove test/dummy/README

remove test/dummy/test

remove test/dummy/vendor

First, it creates the basic gem structure, including lib and test folders.

Next, it creates a Rails 3 application at test/dummy, allowing us to run

our tests inside a Rails 3 application context. The third step modifies

the dummy application load path and configuration while the last step

removes unneeded files. Let’s take a deeper look at those generated

files.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jvrails

ENGINEX 18

Gemfile

The Gemfile lists all required dependencies to run the tests in our newly

created gem. To install those dependencies, you will need Bundler3.

Bundler locks our environment to only use the gems listed in the Gem-

file ensuring the tests are executed using the specified gems.

The generated Gemfile by default requires the following gems: rails, capy-

bara (for integration tests) and sqlite3-ruby. Let’s install these gems by

running bundle install inside the pdf_renderer diretory.

Rakefile

The Rakefile provides basic tasks to run the test suite and generate doc-

umentation. We can get the full list by executing rake -T at pdf_renderer’s

root:

rake clobber_package # Remove package products

rake clobber_rdoc # Remove rdoc products

rake rdoc # Build the rdoc HTML Files

rake rerdoc # Force a rebuild of the RDOC files

rake test # Run tests

pdf_renderer.gemspec

The pdf_renderer.gemspec provides a basic gem specification. If at the

end of this chapter, you want to use the gem in Rails applications,

you just need to push it to a git repository and reference it in your

application Gemfile.

Notice the gem has the same name as the file inside the lib, which is

pdf_renderer. By following this convention, whenever you declare this

gem in a Rails application’s Gemfile, the file at lib/pdf_renderer.rb will be

automatically loaded.

Booting the dummy application

Enginex creates a dummy Rails 3 application inside our test directory

and the booting process of this application is the same as a normal

application created with the rails command.

Different from previous versions, in Rails 3 the config/boot.rb file has

only one responsibility: to configure our application’s load paths. The

config/application.rb should then load all required dependencies and

configure the application, which is initialized in config/environment.rb.

3. http://github.com/carlhuda/bundler

CLICK HERE to purchase this book now.

http://github.com/carlhuda/bundler
http://www.pragprog.com/titles/jvrails

ENGINEX 19

That said, Enginex simply changes test/dummy/config/boot.rb to add pdf_renderer

to the load path and to use the Gemfile at our gem root:

require 'rubygems'

gemfile = File.expand_path('../../../../Gemfile', __FILE__)

if File.exist?(gemfile)

ENV['BUNDLE_GEMFILE'] = gemfile

require 'bundler'

Bundler.setup

end

$:.unshift File.expand_path('../../../../lib', __FILE__)

And then test/dummy/config/application.rb is modified to load pdf_renderer

just after all dependencies are loaded with Bundler.require:

require File.expand_path('../boot', __FILE__)

require "active_model/railtie"

require "active_record/railtie"

require "action_controller/railtie"

require "action_view/railtie"

require "action_mailer/railtie"

Bundler.require

require "pdf_renderer"

Finally, notice that we don’t require active_resource/railtie. This is because

Active Resource won’t be discussed in this book, since it wasn’t sub-

stantially changed in Rails 3.0.

Running tests

Enginex creates two sanity tests for our gem. Let’s run our tests and

see them pass with:

rake test

You should see an output similar to this:

Started

..

Finished in 0.039055 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

The first test, defined in test/pdf_renderer_test.rb, just asserts that a mod-

ule called PdfRenderer was defined in lib/pdf_renderer.rb:

require 'test_helper'

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jvrails

WRITING THE RENDERER 20

class PdfRendererTest < ActiveSupport::TestCase

test "truth" do

assert_kind_of Module, PdfRenderer

end

end

The other test, inside test/integration/navigation_test.rb, ensures that a

Rails application was properly initialized by checking that Rails.application

points to an instance of Dummy::Application, which is the application

class defined at test/dummy/config/application.rb:

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test "truth" do

assert_kind_of Dummy::Application, Rails.application

end

end

Notice the test uses ActiveSupport::IntegrationCase, which is not defined

by Rails but inside test/support/integration_case.rb as shown below:

Define a bare test case to use with Capybara

class ActiveSupport::IntegrationCase < ActiveSupport::TestCase

include Capybara

include Rails.application.routes.url_helpers

end

The test case above simply includes Capybara4, which provides a bunch

of helpers to aid integration testing, and our application url helpers.

The reason we chose to create our own ActiveSupport::IntegrationCase

instead of using ActionController::IntegrationTest provided by Rails is inline

with Capybara philosophy, which we will discuss in the future.

Finally, note that both test files require test/test_helper.rb, which is the

file responsible for loading our application and configuring our testing

environment. With our gem skeleton created and a green test suite, we

can move onto writing our first custom renderer.

1.2 Writing the renderer

At the beginning of this chapter, we briefly discussed the render method

and a few options it accepts, but we haven’t formally described what is

a renderer.

4. http://github.com/jnicklas/capybara

CLICK HERE to purchase this book now.

http://github.com/jnicklas/capybara
http://www.pragprog.com/titles/jvrails

WRITING THE RENDERER 21

A renderer is nothing more than a hook exposed by the render method

to customize its behavior. Adding your own renderer to Rails is quite

simple. Let’s take a look at the :xml renderer in Rails source code as an

example:

Download rails/actionpack/lib/action_controller/metal/renderers.rb

add :xml do |xml, options|

self.content_type ||= Mime::XML

self.response_body = xml.respond_to?(:to_xml) ? xml.to_xml(options) : xml

end

So whenever we invoke the following method in our application:

render :xml => @post

It will invoke the block given with the :xml renderer. The local variable

xml inside the block points to the @post object, and the other options

given to render will be available in the options variable. In this case,

since the method was called without any extra options, it’s an empty

hash.

In the following sections, we want to add a :pdf renderer that creates

a PDF file from a given template and sends it to the client with the

appropriate headers. The value given to the :pdf option should be the

name of the file to be sent. Below is an example of the API we want to

provide:

render :pdf => "contents", :template => "path/to/template"

While Rails knows how to render templates and send files to the client,

it does not know how to handle PDF files. For this, we will use Prawn.

Playing with Prawn

Prawn5 is a PDF writing library for Ruby. We can install it as gem with

the following command:

gem install prawn -v=0.8.4

Let’s test this out by opening irb and creating a simple PDF file:

require 'rubygems'

require 'prawn'

pdf = Prawn::Document.new

pdf.text("A PDF in four lines of code")

pdf.render_file("recipes.pdf")

5. http://github.com/sandal/prawn

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_controller/metal/renderers.rb
http://github.com/sandal/prawn
http://www.pragprog.com/titles/jvrails

WRITING THE RENDERER 22

Exit irb and you can see a PDF file in the directory in which you started

the irb session. Prawn provides its own syntax to create PDFs and, while

this gives us a flexible API, the drawback is that it cannot create PDF

from HTML files.

Code in action

With Prawn installed, we are ready to develop our renderer. Let’s add

prawn as a dependency to our Gemfile:

Download pdf_renderer/1_first_test/Gemfile

gem "prawn", "0.8.4"

After installing the dependencies and before writing the code, let’s write

some tests first. Since we have a dummy application at test/dummy, we

can create controllers as in an actual Rails application and use them

to test the complete request stack. Let’s call the controller used in our

tests HomeController and add the following contents:

Download pdf_renderer/1_first_test/test/dummy/app/controllers/home_controller.rb

class HomeController < ApplicationController

def index

respond_to do |format|

format.html

format.pdf { render :pdf => "contents" }

end

end

end

Now let’s create both HTML and PDF views for the index action:

Download pdf_renderer/1_first_test/test/dummy/app/views/home/index.html.erb

<p>Hey, you can download the pdf for this page by clicking the link below:</p>

<p><%= link_to "PDF", home_path("pdf") %></p>

Download pdf_renderer/1_first_test/test/dummy/app/views/home/index.pdf.erb

This is your new PDF content.

The HTML view only contains a link pointing to the PDF download.

Finally, let’s add a route for the index action:

Download pdf_renderer/1_first_test/test/dummy/config/routes.rb

Dummy::Application.routes.draw do

match "/home(.:format)", :to => "home#index", :as => :home

end

Now let’s write an integration test that verifies a PDF is in fact being

returned when we click the PDF link at /home:

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/Gemfile
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/app/controllers/home_controller.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/app/views/home/index.html.erb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/app/views/home/index.pdf.erb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/dummy/config/routes.rb
http://www.pragprog.com/titles/jvrails

WRITING THE RENDERER 23

Download pdf_renderer/1_first_test/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test 'pdf request sends a pdf as file' do

visit home_path

click_link 'PDF'

assert_equal 'binary', headers['Content-Transfer-Encoding']

assert_equal 'attachment; filename="contents.pdf"',

headers['Content-Disposition']

assert_equal 'application/pdf', headers['Content-Type']

assert_match /Prawn/, page.body

end

protected

def headers

page.response_headers

end

end

The test inherits from ActiveSupport::IntegrationCase and uses a few helpers

defined in Capybara, like visit and click_link, providing a clean and easy-

to-read DSL to our integration tests. The test uses the headers to assert

that a binary encoded PDF file was sent as attachment, including the

expected filename, and while we cannot assert anything about the PDF

body since it’s encoded, we can at least assert that it was generated by

Prawn. Let’s run our test with rake test and watch it fail:

1) Error:

test_pdf_request_sends_a_pdf_as_file(NavigationTest):

NameError: uninitialized constant Mime::PDF

app/controllers/home_controller.rb:5:in `index'

app/controllers/home_controller.rb:3:in `index'

The test fails because we are calling format.pdf in our controller, but

Rails does not know anything about PDF mime types. To find out what

formats Rails 3 supports by default, let’s take a quick look at Rails

source code:

Download rails/actionpack/lib/action_dispatch/http/mime_types.rb

Build list of Mime types for HTTP responses

http://www.iana.org/assignments/media-types/

Mime::Type.register "text/html", :html, %w(application/xhtml+xml), %w(xhtml)

Mime::Type.register "text/plain", :text, [], %w(txt)

Mime::Type.register "text/javascript", :js,

%w(application/javascript application/x-javascript)

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/1_first_test/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/rails/actionpack/lib/action_dispatch/http/mime_types.rb
http://www.pragprog.com/titles/jvrails

WRITING THE RENDERER 24

Mime::Type.register "text/css", :css

Mime::Type.register "text/calendar", :ics

Mime::Type.register "text/csv", :csv

Mime::Type.register "application/xml", :xml, %w(text/xml application/x-xml)

Mime::Type.register "application/rss+xml", :rss

Mime::Type.register "application/atom+xml", :atom

Mime::Type.register "application/x-yaml", :yaml, %w(text/yaml)

Mime::Type.register "multipart/form-data", :multipart_form

Mime::Type.register "application/x-www-form-urlencoded", :url_encoded_form

http://www.ietf.org/rfc/rfc4627.txt

http://www.json.org/JSONRequest.html

Mime::Type.register "application/json", :json,

%w(text/x-json application/jsonrequest)

Create Mime::ALL but do not add it to the SET.

Mime::ALL = Mime::Type.new("*/*", :all, [])

As no PDF format is defined, we need to add one. Let’s start by writ-

ing some unit tests in the test/pdf_renderer_test.rb file and removing the

existing test in the file as it has nothing to add. The test file will look

like the following:

Download pdf_renderer/2_adding_mime/test/pdf_renderer_test.rb

require 'test_helper'

class PdfRendererTest < ActiveSupport::TestCase

test "pdf mime type" do

assert_equal :pdf, Mime::PDF.to_sym

assert_equal "application/pdf", Mime::PDF.to_s

end

end

The test makes two assertions that ensures whenever format.pdf is called,

it will retrieve the Mime::PDF type and then set "application/pdf" as the

response content type. In order to make this test pass, let’s register the

pdf mime type at lib/pdf_renderer.rb:

Download pdf_renderer/2_adding_mime/lib/pdf_renderer.rb

require "action_controller"

Mime::Type.register "application/pdf", :pdf

The code above ensures that Action Controller was already loaded and

then registers Mime::PDF, making our unit test pass. However, when we

run the integration test again, it still fails, but for a different reason:

1) Failure:

test_pdf_request_sends_a_pdf_as_file(NavigationTest)

<"binary"> expected but was

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/2_adding_mime/test/pdf_renderer_test.rb
http://media.pragprog.com/titles/jvrails/code/pdf_renderer/2_adding_mime/lib/pdf_renderer.rb
http://www.pragprog.com/titles/jvrails

UNDERSTANDING RAILS RENDERING STACK 25

<nil>.

The test fails because no header was sent. This is expected since we

still haven’t implemented our renderer. So let’s write it in a few lines of

code inside lib/pdf_renderer.rb:

Download pdf_renderer/3_final/lib/pdf_renderer.rb

require "action_controller"

Mime::Type.register "application/pdf", :pdf

require "prawn"

ActionController::Renderers.add :pdf do |filename, options|

pdf = Prawn::Document.new

pdf.text render_to_string(options)

send_data(pdf.render, :filename => "#{filename}.pdf",

:type => "application/pdf", :disposition => "attachment")

end

And that’s it! In this code block, we create a new PDF document, add

some text to it and send the PDF using the send_data method available

in Rails. We can now run the tests and watch them pass! You can also

go to test/dummy, start the server with bundle exec rails server and test it

by yourself by accessing http://localhost:3000/home and clicking the link.

While send_data is a public Rails method and has been available since

the first Rails versions, you might not have heard about the render_to_string

method. To better understand it, let’s take a look at Rails rendering pro-

cess as a whole.

1.3 Understanding Rails rendering stack

In versions earlier than Rails 3, Rails used to have a lot of code dupli-

cation between Action Mailer and Action Controller due to the fact that

both have several features in common, like template rendering, helpers,

and layouts.

In Rails 3 those shared responsibilities are centralized in Abstract Con-

troller, which both Action Mailer and Action Controller use as their

foundation. Abstract Controller also allows us to cherry pick exactly

the features we want. For instance, if we want an object to have basic

rendering capabilities, where it simply renders a template but does not

include a layout, we just need to include AbstractController::Rendering in

our object.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/pdf_renderer/3_final/lib/pdf_renderer.rb
http://localhost:3000/home
http://www.pragprog.com/titles/jvrails

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Crafting Rails Applications

http://pragprog.com//titles/jvrails

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com//titles/jvrails.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com//titles/jvrails
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com//titles/jvrails
www.pragprog.com/catalog

