
Extracted from:

Crafting Rails Applications
Expert Practices for Everyday Rails Development

This PDF file contains pages extracted from Crafting Rails Applications, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

In this chapter, we’ll see

• Rails template handler API

• multipart templates with Action Mailer

• Rails generators and Railties

Chapter 4

Sending multipart e-mails with
custom template handlers

To finish our tour of the Rails rendering stack, let’s look at how tem-

plates are compiled and rendered by Rails. So far, we learned that con-

trollers’ responsibility is to normalize the rendering options and send

them to the view context. Based on these options, the view context asks

the view paths to find a template in the many resolvers it contains.

As we saw in Section 3.1, Writing the code, on page 60, the resolver

returns instances of ActionView::Template and at the moment those tem-

plates are initialized, we need to pass along an object called handler as

an argument. Each extension, like .erb or .haml, has its own template

handler.

The responsibility of the template handler in the rendering stack is to

compile a template to Ruby source code. And to understand how this

happens, let’s develop a few template handlers on our own.

Our template handler aims to solve a particular issue. Even though

the foundation for today’s e-mails was created in 1970 and the version

4 of the HTML specification dates from 1997, we still cannot rely on

sending HTML e-mails to everyone since many e-mail clients cannot

render these properly.

This means that whenever we configure an application to send an HTML

e-mail, we should also send a TEXT version of the same, creating the

so-called multipart e-mail. If the e-mail’s recipient uses a client that

cannot read HTML, it will fall back to the TEXT part.

CHAPTER 4. SENDING MULTIPART E-MAILS WITH CUSTOM TEMPLATE HANDLERS 78

@handler

@view_paths

@view_context

asks for
a template

returns a
template

asks to compile
the template

returns
compiled template

3

6

78

1
request

@controller

@resolver

asks for
a template

returns a
template

4

5

2 render

9
rendered
template

10
response

Figure 4.1: Objects involved in the rendering stack

While Action Mailer and the Mail gem make creation of multipart e-

mails a breeze, the only issue with this approach is that we have to

maintain two versions of the same e-mail message. Wouldn’t it be nice

if we actually have one template, that could be rendered both as TEXT

and as HTML?

Here’s where Markdown comes in. Markdown1 is a lightweight markup

language, created by John Gruber and Aaron Swartz, which is intended

to be as easy-to-read and easy-to-write as possible. Markdown’s syntax

is based entirely of punctuation characters and allows you to embed

custom HTML whenever required. Here’s an example of Markdown text:

Welcome

=======

Hi, José Valim!

Thanks for choosing our product. Before you use it, you just need

to confirm your account by accessing the following link:

http://example.com/confirmation?token=ASDFGHJK

1. http://daringfireball.net/projects/markdown

CLICK HERE to purchase this book now.

http://daringfireball.net/projects/markdown
http://www.pragprog.com/titles/jvrails

PLAYING WITH THE TEMPLATE HANDLER API 79

Figure 4.2: HTML generated from a Markdown template

Remember, you have *7 days* to confirm it. For more information,

you can visit our [FAQ][1] or our [Customer Support page][2].

Regards,

The Team.

[1]: http://example.com/faq

[2]: http://example.com/customer

Indeed, it’s quite readable! The best part is that it can be transformed

into HTML which is rendered as shown in Figure 4.2.

Our template handler is going to use the features of Markdown to gen-

erate both TEXT and HTML views using just one template. The only

issue with Markdown is that it does not interpret Ruby code. To circum-

vent this, let’s first compile our templates with ERb and then convert

them using the Markdown compiler.

Finally, let’s also hook into the Rails 3 generators and configure the

mailer generator to use our new template handler instead of ERb.

4.1 Playing with the template handler API

In order to have an object compliant with the handler API, it just needs

to respond to the call method. This method receives as an argument

an instance of ActionView::Template, which we already discussed in Sec-

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jvrails

PLAYING WITH THE TEMPLATE HANDLER API 80

tion 3.1, Writing the code, on page 60, and should return a string con-

taining valid Ruby code. The Ruby code returned by the handler is then

compiled into a method, so rendering a template is as simple as invok-

ing this compiled method.

Before diving into our Markdown + ERb handler, let’s create a few tem-

plate handlers to get acquainted with the API.

Ruby template handler

Our first template handler simply allows arbitrary Ruby code as a tem-

plate. This means the following template is valid:

body = ""

body << "This is my first "

body << content_tag(:b, "template handler")

body << "!"

body

In order to implement this, let’s craft a new gem called handlers using

enginex:

enginex handlers

Next, let’s write a simple integration test for our template handler:

Download handlers/1_handlers/test/integration/navigation_test.rb

require 'test_helper'

class NavigationTest < ActiveSupport::IntegrationCase

test '.rb template handler' do

visit '/handlers/index'

expected = 'This is my first template handler!'

assert_match expected, page.body

end

end

The test makes a request to the /handlers/index path, let’s define it in

our router:

Download handlers/1_handlers/test/dummy/config/routes.rb

Dummy::Application.routes.draw do

get "/handlers/:action", :to => "handlers"

end

Since our new route points to HandlersController, let’s implement it as

well:

Download handlers/1_handlers/test/dummy/app/controllers/handlers_controller.rb

class HandlersController < ApplicationController

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/dummy/app/controllers/handlers_controller.rb
http://www.pragprog.com/titles/jvrails

PLAYING WITH THE TEMPLATE HANDLER API 81

end

And create our Ruby template at test/dummy/app/views/handlers/index.html.rb:

Download handlers/1_handlers/test/dummy/app/views/handlers/index.html.rb

body = ""

body << "This is my first "

body << content_tag(:b, "template handler")

body << "!"

body

When we run the test suite, it fails as Rails still does not recognize

the .rb extension in templates. To register a new template handler,

we invoke ActionView::Template.register_template_handler with two argu-

ments: the template extension and the handler object. As the handler

object is anything that responds to call and returns a String, we can

implement our handler simply using Ruby’s lambda. Ruby’s lambda

accepts a block and returns a Proc object that executes the given block

once we invoke call and is a perfect fit as our template handler imple-

mentation is very short:

Download handlers/1_handlers/lib/handlers.rb

require "action_view/template"

ActionView::Template.register_template_handler :rb,

lambda { |template| template.source }

module Handlers

end

Run the test suite and the test we just wrote now passes. Our lambda

receives as an argument an ActionView::Template instance. Since our

template handler needs to return a String with Ruby code and our tem-

plate in the filesystem is written in Ruby, we just need to return the

template.source.

As, since Ruby 1.8.7, symbols implement a to_proc method and :source.to_proc

is exactly the same as lambda { |arg| arg.source }, we can make our tem-

plate handler even shorter:

Download handlers/1_handlers/lib/handlers.rb

ActionView::Template.register_template_handler :rb, :source.to_proc

String template handler

Our .rb template handler is quite simple but has limited usage. Rails

views are constituted mainly of static contents and handling big chunks

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/test/dummy/app/views/handlers/index.html.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails/code/handlers/1_handlers/lib/handlers.rb
http://www.pragprog.com/titles/jvrails

PLAYING WITH THE TEMPLATE HANDLER API 82

of strings in the Ruby code would quickly become messy. That said,

let’s implement another template handler more suitable to handle static

content but still allows us to embed Ruby code. Since strings in Ruby

supports interpolation, our next template handler will be based on

strings and allow the following syntax:

Download handlers/2_more_handlers/test/dummy/app/views/handlers/show.html.string

Congratulations! You just created another #{@what}!

Our new template uses string interpolation and the interpolated Ruby

code references an instance variable named @what. This variable is

defined in controllers and given by the view_assigns method to the view,

as we discussed in Section 1.3, Understanding Rails rendering stack,

on page 25. So let’s define a new action with this instance variable in

our HandlersController to be used as fixture by our tests:

Download handlers/2_more_handlers/test/dummy/app/controllers/handlers_controller.rb

class HandlersController < ApplicationController

def show

@what = "template handler"

end

end

And write a small test for it in our integration suite:

Download handlers/2_more_handlers/test/integration/navigation_test.rb

test '.string template handler' do

visit '/handlers/show'

expected = 'Congratulations! You just created another template handler!'

assert_match expected, page.body

end

To make our new test pass, let’s implement this new template handler,

once again in lib/handlers.rb, as follow:

Download handlers/2_more_handlers/lib/handlers.rb

ActionView::Template.register_template_handler :string,

lambda { |template| "%Q{#{template.source}}" }

Run the test suite and our new test passes. Our template handler

returns a string created with the Ruby shortcut %Q{} which is then

compiled to a method by Rails. When this method is invoked, Ruby

interpreter evaluates the string and returns the interpolated result.

This template handler works fine for simple cases, but has two major

flaws: adding the “}” character to the template causes syntax errors

unless the character is escaped, and the block support is limited, as it

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/views/handlers/show.html.string
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/controllers/handlers_controller.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/lib/handlers.rb
http://www.pragprog.com/titles/jvrails

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 83

needs to be wrapped in the whole interpolation syntax. In other words,

both of the following examples are invalid:

This } causes a syntax error

#{2.times do}

This does not work as in ERb and is invalid

#{end}

So let’s look at more robust template handlers next.

4.2 Building a template handler with Markdown + ERb

There are several gems out there that can compile Markdown syntax to

HTML. For our template handler, let’s use RDiscount2, which is a Ruby

wrapper to the fast Markdown compiler library called Discount, written

in C.

Markdown Template Handler

Creating a template handler that can compile Markdown code is quite

straightforward. Let’s add another test to our suite:

Download handlers/2_more_handlers/test/integration/navigation_test.rb

test '.md template handler' do

visit '/handlers/rdiscount'

expected = '<p>RDiscount is cool and fast!</p>'

assert_match expected, page.body

end

And then write our template in the filesystem:

Download handlers/2_more_handlers/test/dummy/app/views/handlers/rdiscount.html.md

RDiscount is *cool* and **fast**!

Note that our template uses .md as the extension for Markdown. Let’s

register it in Rails:

Download handlers/2_more_handlers/lib/handlers.rb

require "rdiscount"

ActionView::Template.register_template_handler :md,

lambda { |template| "RDiscount.new(#{template.source.inspect}).to_html" }

Since our template handler relies on RDiscount, let’s add it to the Gem-

file and run bundle install just after:

2. http://github.com/rtomayko/rdiscount

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/views/handlers/rdiscount.html.md
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/lib/handlers.rb
http://github.com/rtomayko/rdiscount
http://www.pragprog.com/titles/jvrails

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 84

Download handlers/2_more_handlers/Gemfile

gem "rdiscount", "1.6.5"

When we run the test suite, our new test passes. While our Markdown

template handler works like a charm, it does not allow us to embed

Ruby code, so its usage becomes quite limited. To circumvent this limi-

tation, we could use the same technique we used in our .string template

handler, but it also has its limitations when using Ruby blocks. There-

fore, we are going to use ERb to embed Ruby code in our Markdown

template and create a new template handler named .merb.

Markdown + ERb Template Handler

First, let’s add an example of our new template handler to the filesys-

tem. This example should be inside our dummy app and will be used

in our tests:

Download handlers/2_more_handlers/test/dummy/app/views/handlers/merb.html.merb

MERB template handler is **<%= %w(cool fast).to_sentence %>**!

And then let’s write a test that renders this template and check the

desired output:

Download handlers/2_more_handlers/test/integration/navigation_test.rb

test '.merb template handler' do

visit '/handlers/merb'

expected = '<p>MERB template handler is cool and fast!</p>'

assert_match expected, page.body.strip

end

This time, to implement our template handler, we are not going to use

a lambda. Instead, let’s create a module that responds to call, so, as our

implementation grows, we will be able to split and refactor it in several

methods, something that would not be possible if we used a lambda.

Also, let’s use the ActionView::Template.registered_template_handler method

to retrieve the ERb handler, as we did in Section 3.1, Writing the code,

on page 60. The code is shown below and should be added to our

lib/handlers.rb file:

Download handlers/2_more_handlers/lib/handlers.rb

module Handlers

module MERB

def self.erb_handler

@@erb_handler ||= ActionView::Template.registered_template_handler(:erb)

end

def self.call(template)

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/Gemfile
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/dummy/app/views/handlers/merb.html.merb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/test/integration/navigation_test.rb
http://media.pragprog.com/titles/jvrails/code/handlers/2_more_handlers/lib/handlers.rb
http://www.pragprog.com/titles/jvrails

BUILDING A TEMPLATE HANDLER WITH MARKDOWN + ERB 85

compiled_source = erb_handler.call(template)

"RDiscount.new(begin;#{compiled_source};end).to_html"

end

end

end

ActionView::Template.register_template_handler :merb, Handlers::MERB

The ERb handler compiles the template and, as any other template

handler, it returns a string with valid Ruby code. The result returned

by this Ruby code is a String containing Markdown syntax which is

then converted to HTML using RDiscount.

Finally, look how we wrapped the code returned by ERb in an inline

begin/end clause. This must be done inline or it will mess up backtrace

lines. For instance, imagine the following template:

<% nil.this_method_does_not_exist! %>

This template obviously raises an error when rendered. However, con-

sider those two ways to compile the template:

RDiscount.new(begin

nil.this_method_does_not_exist!

end).to_html

RDiscount.new(begin;nil.this_method_does_not_exist!;end).to_html

In the first case, it says the error was raised in the second line, while

in the latter, it correctly accuses the first line. And we need to use

begin/end to wrap the code, otherwise it’s not valid Ruby code. Let’s

verify this by trying the following code in irb:

puts(a=1;b=a+1) # => raises syntax error

puts(begin;a=1;b=a+1;end) # => prints 2 properly

The last line in our implementation registers our new handler, allowing

all tests to pass. Our .merb template handler is already implemented,

but it still does not render both TEXT and HTML templates as described

at the beginning of this chapter, only the latter. So let’s change our

template handler to output different results depending on the template

format.

Multipart e-mails

The best way to showcase the behavior we want to add to our template

handler is using multipart e-mails in Action Mailer. So let’s create a

mailer inside our dummy application to be used by our tests:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jvrails

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Crafting Rails Applications

http://pragprog.com//titles/jvrails

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com//titles/jvrails.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com//titles/jvrails
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com//titles/jvrails
www.pragprog.com/catalog

