
Extracted from:

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

This PDF file contains pages extracted from Crafting Rails 4 Applications, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

Jose Valim

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-55-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B2.0—June 21, 2013

http://pragprog.com

Like many web frameworks, Rails uses the MVC architecture pattern to
organize our code. The controller, most of the time, is responsible for gathering
information from our models and sending the data to the view for rendering.
On other occasions, the model is responsible for representing itself, and then
the view does not take part in the request, as usually happens in JSON

requests. Those two scenarios can be illustrated in the following index action:

class PostsController < ApplicationController
def index

if client_authenticated?
render json: Post.all

else
render template: "shared/not_authenticated", status: 401

end
end

end

The common interface to render a given model or template is the render()
method. Besides knowing how to render a :template or a :file, Rails also can
render raw :text and a few formats like :xml, :json, and :js. Although the default
set of options provided by Rails is enough to bootstrap our applications, we
sometimes need to add new options like :pdf or :csv to the render() method.

To achieve this, Rails provides an API that we can use to create our own
renderers. We’ll explore this API as we modify the render() method to accept
:pdf as an option and return a PDF created with Prawn,1 a tiny, fast, and
nimble PDF writer library for Ruby.

As most chapters in this book, we’ll use the rails plugin generator to create a
plugin that extends Rails capabilities. Let’s get started!

1.1 Creating your first Rails Plugin

If you already have Rails installed, you are ready to craft your first plugin.
Let’s call this plugin pdf_renderer:

$ rails plugin new pdf_renderer

When we run this command we see the following output:

create
create README.rdoc
create Rakefile
create pdf_renderer.gemspec
create MIT-LICENSE
create .gitignore

1. https://github.com/prawnpdf/prawn

• Click HERE to purchase this book now. discuss

https://github.com/prawnpdf/prawn
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

create Gemfile
create lib/pdf_renderer.rb
create lib/tasks/pdf_renderer_tasks.rake
create lib/pdf_renderer/version.rb
create test/test_helper.rb
create test/pdf_renderer_test.rb
append Rakefile

vendor_app test/dummy
run bundle install

This command creates the basic plugin structure, containing a pdf_renderer.gem-
spec file, a Rakefile, a Gemfile and the lib and test folders. The second to last step
is a little more interesting; This command generates a full-fledged Rails
application inside the test/dummy directory, which allow us to run our tests
inside a Rails application context.

The generator finishes by running bundle install, which uses Bundler2 to install
all dependencies required by our project. With everything set up, let’s explore
the generated files.

pdf_renderer.gemspec

The pdf_renderer.gemspec provides a basic gem specification. The specification
declares the gem authors, its version, its dependencies, the gem source files
and more. This allows us to easily bundle our plugin into a Ruby Gem, making
it easy for us to share our code across different Rails applications.

Notice the gem has the same name as the file inside the lib directory, which
is pdf_renderer. By following this convention, whenever you declare this gem in
a Rails application’s Gemfile, the file at lib/pdf_renderer.rb will be automatically
required. For now, this file contains only a definition for the PdfRenderer module.

Finally, notice that our gemspec does not contain a explicit version. Instead,
the version is defined in lib/pdf_renderer/version.rb which is referenced in the
gemspec as PdfRenderer::VERSION. This is a common practice in Ruby Gems.

Gemfile

In a Rails application, the Gemfile is used to list all sorts of dependencies, no
matter if it is a development, test or production dependency. However, as our
plugin already has a gemspec to list dependencies, the Gemfile simply reuses
the gemspec dependencies. The Gemfile may eventually contain extra dependen-

2. http://gembundler.com/

• 2

• Click HERE to purchase this book now. discuss

http://gembundler.com/
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

cies which you find convenient to use during development, like the debugger
or the excellent pry3 gems.

To manage our plugin dependencies, we use Bundler. Bundler locks our
environment to use only the gems listed in both the pdf_renderer.gemspec and
the Gemfile, ensuring the tests are executed using the specified gems. Adding
new dependencies and updating existing ones can be done by running the
bundle install and bundle update commands in our plugin’s root.

Rakefile

The Rakefile provides basic tasks to run the test suite, generate documentation
and release our gem to the public. We can get the full list by executing rake -
T at pdf_renderer’s root:

$ rake -T
rake build # Build pdf_renderer-0.0.1.gem into the pkg directory
rake clobber_rdoc # Remove RDoc HTML files
rake install # Build and install pdf_renderer-0.0.1.gem into system gems
rake rdoc # Build RDoc HTML files
rake release # Create tag v0.0.1 and build and push pdf_renderer...
rake rerdoc # Rebuild RDoc HTML files
rake test # Run tests

Booting the Dummy Application

rails plugin creates a dummy application inside our test directory, and the
booting process of this application is similar to a normal application created
with the rails command.

The config/boot.rb file has only one responsibility: to configure our application’s
load paths. The config/application.rb file should then load all required dependencies
and configure the application, which is initialized in config/environment.rb.

The boot file generated by rails plugin can be found at test/dummy/config/boot.rb and
it is similar to the application one, the only difference is that it needs to point
to the Gemfile at the root of the pdf_renderer plugin. It also explicitly adds the
plugin’s lib directory to Ruby’s load path, making our plugin available inside
the dummy application:

pdf_renderer/1_prawn/test/dummy/config/boot.rb
Set up gems listed in the Gemfile.
ENV['BUNDLE_GEMFILE'] ||= File.expand_path('../../../../Gemfile', __FILE__)

require 'bundler/setup' if File.exists?(ENV['BUNDLE_GEMFILE'])
$LOAD_PATH.unshift File.expand_path('../../../../lib', __FILE__)

3. http://pryrepl.org/

• Click HERE to purchase this book now. discuss

Creating your first Rails Plugin • 3

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/boot.rb
http://pryrepl.org/
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

The boot file delegates the responsibility of setting up dependencies and their
load path to Bundler. The test/dummy/config/application.rb is a stripped down
version of the config/application.rb found in Rails applications:

pdf_renderer/1_prawn/test/dummy/config/application.rb
require File.expand_path('../boot', __FILE__)

require 'rails/all'

Bundler.require(*Rails.groups)
require "pdf_renderer"

module Dummy
class Application < Rails::Application

...
end

end

There are no changes to the config/environment.rb; it is exactly the same as you’d
find in a regular Rails application:

pdf_renderer/1_prawn/test/dummy/config/environment.rb
Load the rails application.
require File.expand_path('../application', __FILE__)

Initialize the rails application.
Dummy::Application.initialize!

Running Tests

rails plugin generates by default one sanity test for our plugin. Let’s run our
tests and see them pass with the following:

$ rake test

The output looks something like this:

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/application.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/environment.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Run options: --seed 20094

Running tests:

.

Finished tests in 0.096440s, 10.3691 tests/s, 10.3691 assertions/s.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

The test, defined in test/pdf_renderer_test.rb, just asserts that a module called
PdfRenderer was defined by our plugin.

pdf_renderer/1_prawn/test/pdf_renderer_test.rb
require 'test_helper'

class PdfRendererTest < ActiveSupport::TestCase
test "truth" do

assert_kind_of Module, PdfRenderer
end

end

Finally, note that our test file requires test/test_helper.rb, which is the file
responsible for loading our application and configuring our testing environ-
ment. With our plugin skeleton created and a green test suite, we can start
writing our first custom renderer.

1.2 Writing the Renderer

At the beginning of this chapter, we briefly discussed the render() method and
a few options that it accepts, but we haven’t formally described what a ren-
derer is.

A renderer is nothing more than a hook exposed by the render() method to
customize its behavior. Adding our own renderer to Rails is quite simple. Let’s
take a look at the :json renderer in Rails source code as an example:

rails/actionpack/lib/action_controller/metal/renderers.rb
add :json do |json, options|

json = json.to_json(options) unless json.kind_of?(String)

if options[:callback].present?
self.content_type ||= Mime::JS
"#{options[:callback]}(#{json})"

else
self.content_type ||= Mime::JSON
json

end
end

• Click HERE to purchase this book now. discuss

Writing the Renderer • 5

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/pdf_renderer_test.rb
http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_controller/metal/renderers.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

So, whenever we invoke the following method in our application:

render json: @post

it will invoke the block defined as the :json renderer. The local variable json
inside the block points to the @post object, and the other options passed to
render() will be available in the options variable. In this case, since the method
was called without any extra options, it’s an empty hash.

In the following sections, we want to add a :pdf renderer that creates a PDF
document from a given template and sends it to the client with the appropriate
headers. The value given to the :pdf option should be the name of the file to
be sent.

The following is an example of the API we want to provide:

render pdf: 'contents', template: 'path/to/template'

Although Rails knows how to render templates and send files to the client, it
does not know how to handle PDF files. For this, let’s use Prawn.

Playing with Prawn

Prawn4 is a PDF-writing library for Ruby. Since it is going to be a dependency
of our plugin, we need to add it to our pdf_renderer.gemspec:

pdf_renderer/1_prawn/pdf_renderer.gemspec
s.add_dependency "prawn", "0.12.0"

Next, let’s ask bundler to install our new dependency and test it via interactive
Ruby:

$ bundle install
$ irb

Inside irb, let’s create a sample PDF:

require "prawn"

pdf = Prawn::Document.new
pdf.text("A PDF in four lines of code")
pdf.render_file("sample.pdf")

Exit irb, and you can see a PDF file in the directory in which you started the
irb session. Prawn provides its own syntax to create PDFs, and although this
gives us a flexible API, the drawback is that it cannot create PDF from HTML
files.

4. https://github.com/prawnpdf/prawn

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/pdf_renderer.gemspec
https://github.com/prawnpdf/prawn
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Code in Action

Let’s write some tests before we dive into the code. Since we have a dummy
application at test/dummy, we can create controllers as in an actual Rails
application and use them to test the complete request stack. Let’s name the
controller used in our tests HomeController and add the following contents:

pdf_renderer/1_prawn/test/dummy/app/controllers/home_controller.rb
class HomeController < ApplicationController

def index
respond_to do |format|
format.html
format.pdf { render pdf: "contents" }

end
end

end

Now let’s create the PDF view used by the controller:

pdf_renderer/1_prawn/test/dummy/app/views/home/index.pdf.erb
This template is rendered with Prawn.

And add a route for the index action:

pdf_renderer/1_prawn/test/dummy/config/routes.rb
Dummy::Application.routes.draw do

get "/home", to: "home#index", as: :home
end

Finally, let’s write an integration test that verifies a PDF is in fact being
returned when we access /home.pdf:

pdf_renderer/1_prawn/test/integration/pdf_delivery_test.rb
require "test_helper"

class PdfDeliveryTest < ActionDispatch::IntegrationTest
test "pdf request sends a pdf as file" do

get home_path(format: :pdf)

assert_match "PDF", response.body
assert_equal "binary", headers["Content-Transfer-Encoding"]

assert_equal "attachment; filename=\"contents.pdf\"",
headers["Content-Disposition"]

assert_equal "application/pdf", headers["Content-Type"]
end

end

The test uses the response headers to assert that a binary-encoded PDF file
was sent as an attachment, including the expected filename. Although we
cannot assert anything about the PDF body since it’s encoded, we can at least

• Click HERE to purchase this book now. discuss

Writing the Renderer • 7

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/app/controllers/home_controller.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/app/views/home/index.pdf.erb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/test/integration/pdf_delivery_test.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

assert that it has the string PDF in it, which is added by Prawn to the PDF
body. Let’s run our test with rake test and watch it fail:

1) Failure:
test_pdf_request_sends_a_pdf_as_file(PdfDeliveryTest):
Expected /PDF/ to match "This template is rendered with Prawn.\n".

The test fails as expected. Since we haven’t taught Rails how to handle the
:pdf option in render, it is simply rendering the template without wrapping it
in a PDF. We can make the test pass by implementing our renderer in just a
few lines of code inside lib/pdf_renderer.rb:

pdf_renderer/1_prawn/lib/pdf_renderer.rb
require "prawn"
ActionController::Renderers.add :pdf do |filename, options|

pdf = Prawn::Document.new
pdf.text render_to_string(options)
send_data(pdf.render, filename: "#{filename}.pdf",

disposition: "attachment")
end

And that’s it! In this code block, we create a new PDF document, add some
text to it, and send the PDF as an attachment using the send_data() method
available in Rails. We can now run the tests and watch them pass. You can
also go to test/dummy, start the server with rails server, and test it by yourself by
accessing http://localhost:3000/home.pdf.

Even though our test passes, there is still some explaining to do. First of all,
observe that we did not, at any point, set the Content-Type to application/pdf. How
did Rails know which content type to set in our response?

The content type was set correctly because Rails ships with a set of registed
formats and mime types:

rails/actionpack/lib/action_dispatch/http/mime_types.rb
Mime::Type.register "text/html", :html, %w(application/xhtml+xml), %w(xhtml)
Mime::Type.register "text/plain", :text, [], %w(txt)
Mime::Type.register "text/javascript", :js,

%w(application/javascript application/x-javascript)
Mime::Type.register "text/css", :css
Mime::Type.register "text/calendar", :ics
Mime::Type.register "text/csv", :csv

Mime::Type.register "image/png", :png, [], %w(png)
Mime::Type.register "image/jpeg", :jpeg, [], %w(jpg jpeg jpe pjpeg)
Mime::Type.register "image/gif", :gif, [], %w(gif)
Mime::Type.register "image/bmp", :bmp, [], %w(bmp)
Mime::Type.register "image/tiff", :tiff, [], %w(tif tiff)

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/pdf_renderer/1_prawn/lib/pdf_renderer.rb
http://media.pragprog.com/titles/jvrails2/code/rails/actionpack/lib/action_dispatch/http/mime_types.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Mime::Type.register "video/mpeg", :mpeg, [], %w(mpg mpeg mpe)

Mime::Type.register "application/xml", :xml, %w(text/xml application/x-xml)
Mime::Type.register "application/rss+xml", :rss
Mime::Type.register "application/atom+xml", :atom
Mime::Type.register "application/x-yaml", :yaml, %w(text/yaml)

Mime::Type.register "multipart/form-data", :multipart_form
Mime::Type.register "application/x-www-form-urlencoded", :url_encoded_form

Mime::Type.register "application/json", :json,
%w(text/x-json application/jsonrequest)

Mime::Type.register "application/pdf", :pdf, [], %w(pdf)
Mime::Type.register "application/zip", :zip, [], %w(zip)

Notice how the PDF format is defined with its respective content type. When
we requested the /home.pdf URL, Rails retrieved the pdf format from the URL,
verified it matched with the format.pdf block defined in HomeController#index and
proceeded to set the proper content type before invoking the block which
called render.

Going back to our render implementation, although send_data() is a public Rails
method and has been available since the first Rails versions, you might not
have heard about the render_to_string() method. To better understand it, let’s
take a look at the Rails rendering process as a whole.

• Click HERE to purchase this book now. discuss

Writing the Renderer • 9

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

