
Extracted from:

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

This PDF file contains pages extracted from Crafting Rails 4 Applications, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

Jose Valim

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-55-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B2.0—June 21, 2013

http://pragprog.com

In the previous chapters, we analyzed the Rails rendering stack inside and
out. You learned that when a request reaches a controller, the controller
gathers the required information to render a template. The template is retrieved
from one of the resolvers, compiled, rendered fully and embedded in a layout.
At the end of this process, you have a Ruby string representing this template.
The string is set as the HTTP response and sent back to the client.

This approach works fine for the vast majority of applications. However, in
some particular cases, we need to send our response in smaller chunks.
Sometimes, those smaller chunks may be infinite; we keep on sending chunks
to the client until the connection between the server and the client is closed.

Whenever we send a response in chunks, we say the server is streaming data
to the client. Since Rails was built with the more traditional request-response
scenario in mind, streaming support was added and improved in Rails over
time and we are going to explore it in this chapter.

To explore how streaming works, let’s write a Rails plugin that sends data to
the browser whenever one of our stylesheets changes. The browser will use
this information to reload the current page stylesheets, allowing developers
to see changes in the HTML page as they modify their assets file, without a
need to manually refresh the page in the web browser.

Since this plugin is going to have its own controller, assets, routes and more,
we will rely on the power provided by Rails engines so we can add those
functionalities as if they were part of a Rails application, but then bundle it
in a gem to share across different projects.

5.1 Extending Rails with Engines

Rails engines allow our plugin to have its own controllers, models, helpers,
views, assets, and routes, just like in a regular Rails application. Let’s generate
a plugin called live_assets using the Rails plugin generator. But this time we’ll
pass the --full flag, which will generate directories for models, controllers,
routes and more:

$ rails plugin new live_assets --full

In addition to the files the generator normally creates for us, the --full flag also
generates these files:

• an app directory with controllers, models and others

• a config/routes.rb file for routes

• a lib/live_assets/engine.rb file declaring our engine

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

• an empty test/integration/navigation_test.rb file that we can add our integration
tests to

The most important file here is lib/live_assets/engine.rb, so let’s take a closer look
at it:

live_assets/1_live/lib/live_assets/engine.rb
module LiveAssets

class Engine < ::Rails::Engine
end

end

In order to create an engine, we need to inherit from Rails::Engine and ensure
our new engine is loaded as soon as possible. The generator we ran already
did this for us by placing this line in lib/live_assets.rb:

live_assets/1_live/lib/live_assets.rb
require "live_assets/engine"

module LiveAssets
end

Creating a Rails::Engine is quite similar to creating a Rails::Railtie. This is because
a Rails::Engine is nothing more than a Rails::Railtie with some default initializers
and the Paths API, which we’ll see next.

Paths

A Rails::Engine does not have hard-coded paths. This means we are not required
to place our models or controllers in app/; we can put them anywhere we
choose. For instance, we can configure our engine to load our controllers from
lib/controllers instead of app/controllers as follows:

module LiveAssets
class Engine < Rails::Engine

paths["app/controllers"] = ["lib/controllers"]
end

end

We can also have Rails load our controllers from both app/controllers and
lib/controllers:

module LiveAssets
class Engine < Rails::Engine

paths["app/controllers"] << "lib/controllers"
end

end

Those paths have the same semantics as in a Rails application: if you have
a controller named LiveAssetsController inside app/controllers/live_assets_controller.rb or

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/lib/live_assets/engine.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/lib/live_assets.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

lib/controllers/live_assets_controller.rb, the controller will be loaded automatically
when you need it, it doesn’t need to be explicitly required.

For now, we are going to follow the conventional path and stick our controllers
at app/controllers, so don’t apply the previous changes. We can check all cus-
tomizable paths for an engine by inspecting the Rails source code:

rails/railties/lib/rails/engine/configuration.rb
def paths

@paths ||= begin
paths = Rails::Paths::Root.new(@root)

paths.add "app", eager_load: true, glob: "*"
paths.add "app/assets", glob: "*"
paths.add "app/controllers", eager_load: true
paths.add "app/helpers", eager_load: true
paths.add "app/models", eager_load: true
paths.add "app/mailers", eager_load: true
paths.add "app/views"

paths.add "app/controllers/concerns", eager_load: true
paths.add "app/models/concerns", eager_load: true

paths.add "lib", load_path: true
paths.add "lib/assets", glob: "*"
paths.add "lib/tasks", glob: "**/*.rake"

paths.add "config"
paths.add "config/environments", glob: "#{Rails.env}.rb"
paths.add "config/initializers", glob: "**/*.rb"
paths.add "config/locales", glob: "*.{rb,yml}"
paths.add "config/routes.rb"

paths.add "db"
paths.add "db/migrate"
paths.add "db/seeds.rb"

paths.add "vendor", load_path: true
paths.add "vendor/assets", glob: "*"

paths
end

end

The previous snippet shows the engine also specifies which paths should be
eager loaded and which ones shuold not, besides also listing paths to locales,
migrations and more. However, declaring a path is not enough, something
has to be done with such paths at some point after all. That’s where initializers
come in.

• Click HERE to purchase this book now. discuss

Extending Rails with Engines • 7

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/engine/configuration.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Initializers

An engine has several initializers that are responsible for booting the engine.
These initializers are more low-level and should not be confused with the ones
available inside your application’s config/initializers. Let’s explore an example:

rails/railties/lib/rails/engine.rb
initializer :add_view_paths do

views = paths["app/views"].existent
unless views.empty?

ActiveSupport.on_load(:action_controller){ prepend_view_path(views) }
ActiveSupport.on_load(:action_mailer){ prepend_view_path(views) }

end
end

This initializer is responsible for adding our engine views, usually defined in
app/views, to ActionController::Base and ActionMailer::Base as soon as they are loaded,
allowing a Rails application to use the templates defined in an engine. To see
all initializers defined in a Rails::Engine, we can start a new Rails console under
test/dummy with rails console and type the following:

Rails::Engine.initializers.map(&:name) # =>
[:set_load_path, :set_autoload_paths, :add_routing_paths,
:add_locales, :add_view_paths, :load_environment_config,
:append_assets_path, :prepend_helpers_path,
:load_config_initializers, :engines_blank_point]

Working with an engine is pretty much the same as working with a Rails
application. Since we know how to build applications, implementing our
streaming plugin should feel familiar.

5.2 Live Streaming

In order to show how streaming works, let’s create a controller called LiveAs-
setsController at app/controllers/live_assets_controller.rb that includes the ActionController::Live
functionality and streams “hello world” continuously:

live_assets/1_live/app/controllers/live_assets_controller.rb
class LiveAssetsController < ActionController::Base

include ActionController::Live

def hello
while true
response.stream.write "Hello World\n"
sleep 1

end
rescue IOError

response.stream.close
end

end

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/engine.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/app/controllers/live_assets_controller.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Our controller provides an action named hello() that streams Hello World every
second. If, for any reason, the connection between the server and the client
drops, response.stream.write will fail with IOError which we need to rescue and then
properly close our stream.

We also need a route for this endpoint:

live_assets/1_live/config/routes.rb
Rails.application.routes.draw do

get "/live_assets/:action", to: "live_assets"
end

We are almost ready to try out our streaming endpoint. However, since a Rails
engine cannot run on its own, we need to start it via the application in
test/dummy. Furthermore, the streaming functionality doesn’t work in WEBrick,
the server that ships with Ruby which is used by default by Rails, since
WEBrick would first buffer our response before sending it to the client and,
given our response is infinite, we would never see anything at all. For this
reason, let’s add Puma1 as a development dependency to our gemspec:

live_assets/1_live/live_assets.gemspec
s.add_development_dependency "puma"

And finally go into the test/dummy directory and run rails s. Rails now starts
Puma instead of WEBrick:

=> Booting Puma
=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server

Most browsers will also try to buffer the streaming response and it may take
a while before they decide to show us anything. So, to test that our streaming
endpoint really works, we’ll use cURL2 which works via the command line.
Let’s give curl a try:

$ curl -v localhost:3000/live_assets/hello
> GET /live_assets/hello HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0)
> Host: localhost:3000
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Frame-Options: SAMEORIGIN
< X-XSS-Protection: 1; mode=block
< X-Content-Type-Options: nosniff

1. http://puma.io/
2. http://curl.haxx.se/

• Click HERE to purchase this book now. discuss

Live Streaming • 9

http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/live_assets/1_live/live_assets.gemspec
http://puma.io/
http://curl.haxx.se/
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

< X-UA-Compatible: chrome=1
< Cache-Control: no-cache
< Content-Type: text/html; charset=utf-8
< X-Request-Id: f21f8c0d-d496-4bfa-944c-cd01b44b87ee
< X-Runtime: 0.003120
< Transfer-Encoding: chunked
<
Hello World
Hello World

Each second, you will see a new "Hello World" line appear on the screen over
and over. This means our streaming end point is working. Hit CTRL+C in your
keyboard to stop it as we are ready to move to more complex examples!

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

