
Extracted from:

A Common-Sense Guide to Data
Structures and Algorithms

Level Up Your Core Programming Skills

This PDF file contains pages extracted from A Common-Sense Guide to Data
Structures and Algorithms, published by the Pragmatic Bookshelf. For more infor-
mation or to purchase a paperback or PDF copy, please visit http://www.prag-

prog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com
http://www.pragprog.com

A Common-Sense Guide to Data
Structures and Algorithms

Level Up Your Core Programming Skills

Jay Wengrow

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian MacDonald
Copy Editor: Nicole Abramowtiz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-244-2
Book version: P2.0—July 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

We’ve seen in the preceding chapters that the number of steps that an algo-
rithm takes is the primary factor in determining its efficiency.

However, we can’t simply label one algorithm a “22-step algorithm” and
another a “400-step algorithm.” This is because the number of steps that an
algorithm takes cannot be pinned down to a single number. Let’s take linear
search, for example. The number of steps that linear search takes varies, as
it takes as many steps as there are cells in the array. If the array contains
twenty-two elements, linear search takes twenty-two steps. If the array has
400 elements, however, linear search takes 400 steps.

The more accurate way to quantify efficiency of linear search is to say that
linear search takes N steps for N elements in the array. Of course, that’s a
pretty wordy way of expressing this concept.

In order to help ease communication regarding time complexity, computer
scientists have borrowed a concept from the world of mathematics to describe
a concise and consistent language around the efficiency of data structures
and algorithms. Known as Big O Notation, this formalized expression around
these concepts allows us to easily categorize the efficiency of a given algorithm
and convey it to others.

Once you understand Big O Notation, you’ll have the tools to analyze every
algorithm going forward in a consistent and concise way—and it’s the way
that the pros use.

While Big O Notation comes from the math world, we’re going to leave out all
the mathematical jargon and explain it as it relates to computer science.
Additionally, we’re going to begin by explaining Big O Notation in very simple
terms, and continue to refine it as we proceed through this and the next three
chapters. It’s not a difficult concept, but we’ll make it even easier by
explaining it in chunks over multiple chapters.

Big O: Count the Steps
Instead of focusing on units of time, Big O achieves consistency by focusing
only on the number of steps that an algorithm takes.

In Why Data Structures Matter, we discovered that reading from an array takes
just one step, no matter how large the array is. The way to express this in
Big O Notation is:

O(1)

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

Many pronounce this verbally as “Big Oh of 1.” Others call it “Order of 1.” My
personal preference is “Oh of 1.” While there is no standardized way to pro-
nounce Big O Notation, there is only one way to write it.

O(1) simply means that the algorithm takes the same number of steps no
matter how much data there is. In this case, reading from an array always
takes just one step no matter how much data the array contains. On an old
computer, that step may have taken twenty minutes, and on today’s hardware
it may take just a nanosecond. But in both cases, the algorithm takes just a
single step.

Other operations that fall under the category of O(1) are the insertion and
deletion of a value at the end of an array. As we’ve seen, each of these opera-
tions takes just one step for arrays of any size, so we’d describe their efficiency
as O(1).

Let’s examine how Big O Notation would describe the efficiency of linear
search. Recall that linear search is the process of searching an array for a
particular value by checking each cell, one at a time. In a worst-case scenario,
linear search will take as many steps as there are elements in the array. As
we’ve previously phrased it: for N elements in the array, linear search can
take up to a maximum of N steps.

The appropriate way to express this in Big O Notation is:

O(N)

I pronounce this as “Oh of N.”

O(N) is the “Big O” way of saying that for N elements inside an array, the
algorithm would take N steps to complete. It’s that simple.

Constant Time vs. Linear Time
Now that we’ve encountered O(N), we can begin to see that Big O Notation does
more than simply describe the number of steps that an algorithm takes, such
as a hard number such as 22 or 400. Rather, it describes how many steps an
algorithm takes based on the number of data elements that the algorithm is acting
upon. Another way of saying this is that Big O answers the following question:
how does the number of steps change as the data increases?

An algorithm that is O(N) will take as many steps as there are elements of
data. So when an array increases in size by one element, an O(N) algorithm
will increase by one step. An algorithm that is O(1) will take the same number
of steps no matter how large the array gets.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

So Where’s the Math?

As I mentioned, in this book, I’m taking an easy-to-understand approach to the topic of
Big O. That’s not the only way to do it; if you were to take a traditional college course on
algorithms, you’d probably be introduced to Big O from a mathematical perspective. Big
O is originally a concept from mathematics, and therefore it’s often described in mathe-
matical terms. For example, one way of describing Big O is that it describes the upper
bound of the growth rate of a function, or that if a function g(x) grows no faster than a
function f(x), then g is said to be a member of O(f). Depending on your mathematics
background, that either makes sense, or doesn’t help very much. I’ve written this book
so that you don’t need as much math to understand the concept.

If you want to dig further into the math behind Big O, check out Introduction to
Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein (MIT Press, 2009) for a full mathematical explanation. Justin Abrahms provides
a pretty good definition in his article: https://justin.abrah.ms/computer-science/understanding-big-
o-formal-definition.html. Also, the Wikipedia article on Big O (https://en.wikipedia.org/wiki/
Big_O_notation) takes a fairly heavy mathematical approach.

Look at how these two types of algorithms are plotted on a graph on page 8.

You’ll see that O(N) makes a perfect diagonal line. This is because for every
additional piece of data, the algorithm takes one additional step. Accordingly,
the more data, the more steps the algorithm will take. For the record, O(N) is
also known as linear time.

Contrast this with O(1), which is a perfect horizontal line, since the number
of steps in the algorithm remains constant no matter how much data there
is. Because of this, O(1) is also referred to as constant time.

As Big O is primarily concerned about how an algorithm performs across
varying amounts of data, an important point emerges: an algorithm can be
described as O(1) even if it takes more than one step. Let’s say that a partic-
ular algorithm always takes three steps, rather than one—but it always takes
these three steps no matter how much data there is. On a graph, such an
algorithm would look like this:

• Click HERE to purchase this book now. discuss

Constant Time vs. Linear Time • 7

https://justin.abrah.ms/computer-science/understanding-big-o-formal-definition.html
https://justin.abrah.ms/computer-science/understanding-big-o-formal-definition.html
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

O(n)

O(1)

Number of Elements

Nu
mb

er
 o

f
St

ep
s

0 1 2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11 12 13 14 15 16

1

Number of Elements

Nu
mb

er
 o

f
St

ep
s

0 1 2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11 12 13 14 15 16

1

O(1)

Because the number of steps remains constant no matter how much data
there is, this would also be considered constant time and be described by Big
O Notation as O(1). Even though the algorithm technically takes three steps
rather than one step, Big O Notation considers that trivial. O(1) is the way to
describe any algorithm that doesn’t change its number of steps even when
the data increases.

If a three-step algorithm is considered O(1) as long as it remains constant, it
follows that even a constant 100-step algorithm would be expressed as O(1)
as well. While a 100-step algorithm is less efficient than a one-step algorithm,
the fact that it is O(1) still makes it more efficient than any O(N) algorithm.

Why is this?

See the following graph:

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

Number of Elements

Nu
mb

er
 o

f
St

ep
s

100

O(n)

O(1)

As the graph depicts, for an array of fewer than one hundred elements, O(N)
algorithm takes fewer steps than the O(1) 100-step algorithm. At exactly one
hundred elements, the two algorithms take the same number of steps (100).
But here’s the key point: for all arrays greater than one hundred, the O(N)
algorithm takes more steps.

Because there will always be some amount of data in which the tides turn,
and O(N) takes more steps from that point until infinity, O(N) is considered
to be, on the whole, less efficient than O(1).

The same is true for an O(1) algorithm that always takes one million steps.
As the data increases, there will inevitably reach a point where O(N) becomes
less efficient than the O(1) algorithm, and will remain so up until an infinite
amount of data.

Same Algorithm, Different Scenarios
As we learned in the previous chapters, linear search isn’t always O(N). It’s
true that if the item we’re looking for is in the final cell of the array, it will
take N steps to find it. But where the item we’re searching for is found in the
first cell of the array, linear search will find the item in just one step. Techni-
cally, this would be described as O(1). If we were to describe the efficiency of
linear search in its totality, we’d say that linear search is O(1) in a best-case
scenario, and O(N) in a worst-case scenario.

While Big O effectively describes both the best- and worst-case scenarios of
a given algorithm, Big O Notation generally refers to worst-case scenario unless
specified otherwise. This is why most references will describe linear search
as being O(N) even though it can be O(1) in a best-case scenario.

• Click HERE to purchase this book now. discuss

Same Algorithm, Different Scenarios • 9

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

The reason for this is that this “pessimistic” approach can be a useful tool:
knowing exactly how inefficient an algorithm can get in a worst-case scenario
prepares us for the worst and may have a strong impact on our choices.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

