
Extracted from:

A Common-Sense Guide to Data
Structures and Algorithms

Level Up Your Core Programming Skills

This PDF file contains pages extracted from A Common-Sense Guide to Data
Structures and Algorithms, published by the Pragmatic Bookshelf. For more infor-
mation or to purchase a paperback or PDF copy, please visit http://www.prag-

prog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com
http://www.pragprog.com

A Common-Sense Guide to Data
Structures and Algorithms

Level Up Your Core Programming Skills

Jay Wengrow

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Development Editor: Brian MacDonald
Copy Editor: Nicole Abramowtiz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-244-2
Book version: P2.0—July 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Recursion in Action
While previous examples of the NASA countdown and calculating factorials
can be solved with recursion, they can also be easily solved with classical
loops. While recursion is interesting, it doesn’t really provide an advantage
when solving these problems.

However, recursion is a natural fit in any situation where you find yourself
having to repeat an algorithm within the same algorithm. In these cases,
recursion can make for more readable code, as you’re about to see.

Take the example of traversing through a filesystem. Let’s say that you have
a script that does something with every file inside of a directory. However,
you don’t want the script to only deal with the files inside the one directo-
ry—you want it to act on all the files within the subdirectories of the directory,
and the subdirectories of the subdirectories, and so on.

Let’s create a simple Ruby script that prints out the names of all subdirectories
within a given directory.

def find_directories(directory)
Dir.foreach(directory) do |filename|

if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."
puts "#{directory}/#{filename}"

end
end

end

Call the find_directories method on the current directory:
find_directories(".")

In this script, we look through each file within the given directory. If the file is
itself a subdirectory (and isn’t a single or double period, which represent the
current and previous directories, respectively), we print the subdirectory name.

While this works well, it only prints the names of the subdirectories immedi-
ately within the current directory. It does not print the names of the subdirec-
tories within those subdirectories.

Let’s update our script so that it can search one level deeper:

def find_directories(directory)
Loop through outer directory:
Dir.foreach(directory) do |filename|

if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."
puts "#{directory}/#{filename}"

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

Loop through inner subdirectory:
Dir.foreach("#{directory}/#{filename}") do |inner_filename|

if File.directory?("#{directory}/#{filename}/#{inner_filename}") &&
inner_filename != "." && inner_filename != ".."

puts "#{directory}/#{filename}/#{inner_filename}"
end

end

end
end

end

Call the find_directories method on the current directory:
find_directories(".")

Now, every time our script discovers a directory, it then conducts an identical
loop through the subdirectories of that directory and prints out the names of
the subdirectories. But this script also has its limitations, because it’s only
searching two levels deep. What if we wanted to search three, four, or five
levels deep? What if we wanted to search as deep as our subdirectories go?
That would seem to be impossible.

And this is the beauty of recursion. With recursion, we can write a script that
goes arbitrarily deep—and is also simple!

def find_directories(directory)
Dir.foreach(directory) do |filename|

if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."
puts "#{directory}/#{filename}"
find_directories("#{directory}/#{filename}")

end
end

end

Call the find_directories method on the current directory:
find_directories(".")

As this script encounters files that are themselves subdirectories, it calls the
find_directories method upon that very subdirectory. The script can therefore dig
as deep as it needs to, leaving no subdirectory unturned.

To visually see how this algorithm applies to an example filesystem, examine
the diagram on page 7, which specifies the order in which the script traverses
the subdirectories.

Note that recursion in a vacuum does not necessarily speed up an algorithm’s
efficiency in terms of Big O. However, we will see in the following chapter that
recursion can be a core component of algorithms that does affect their speed.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

root
directory

Amy Bob Carole

Fun Work Work WorkPics Apps

Games ProductivityKids

1

2

3 4

5 9

6 8 10 13

11 127

• Click HERE to purchase this book now. discuss

Recursion in Action • 7

http://pragprog.com/titles/jwdsal
http://forums.pragprog.com/forums/jwdsal

