
Extracted from:

Node.js the Right Way
Practical, Server-Side JavaScript That Scales

This PDF file contains pages extracted from Node.js the Right Way, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Node.js the Right Way
Practical, Server-Side JavaScript That Scales

Jim R. Wilson

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Candace Cunningham (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-73-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2013

http://pragprog.com

Node.js is built from the ground up to do networked programming. In this
chapter, we’ll explore Node’s built-in support for low-level socket connections.
TCP sockets form the backbone of modern networked applications, and
understanding them will serve you well as we do more complex networking
through the rest of the book.

As you develop socket-based servers and clients, you’ll learn about the follow-
ing Node.js aspects.

Architecture and Core
The asynchronous programming techniques we explored in the last
chapter will be even more important here. You’ll learn how to extend
Node.js classes like EventEmitter. You’ll create custom modules to house
reusable code.

Patterns
A network connection has two endpoints. A common pattern is for one
endpoint to act as the server while the other is the client. We’ll develop
both kinds of endpoints in this chapter, as well as a JavaScript Object
Notation (JSON)-based protocol for client/server communication.

JavaScriptisms
The JavaScript language has an interesting inheritance model. You’ll learn
about Node’s utilities for creating class-like relationships between objects.

Supporting Code
Testing is important to ensure that our programs behave the way we
expect them to. In this chapter, we’ll develop a test server that behaves
badly on purpose to probe edge cases of our protocol.

To begin, we’ll develop a simple and complete TCP server program. Then we’ll
iteratively improve the server as we address concerns such as robustness,
modularity, and testability.

Listening for Socket Connections

Networked services exist to do two things: connect endpoints and transmit
information between them. No matter what kind of information is transmitted,
a connection must first be made.

In this section, you’ll learn how to create socket-based services using Node.js.
We’ll develop an example application that sends data to connected clients,
then we’ll connect to this service using standard command-line tools. By the
end, you’ll have a good idea of how Node does the client/server pattern.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwnode
http://forums.pragprog.com/forums/jwnode

Binding a Server to a TCP Port

TCP socket connections consist of two endpoints. One endpoint binds to a
numbered port while the other endpoint connects to a port.

This is a lot like a telephone system. One phone binds a given phone number
for a long time. A second phone places a call—it connects to the bound
number. Once the call is answered, information (sound) can travel both ways.

In Node.js, the bind and connect operations are provided by the net module.
Binding a TCP port to listen for connections looks like this:

"use strict";
const

net = require('net'),
server = net.createServer(function(connection) {

// use connection object for data transfer
});

server.listen(5432);

The net.createServer() method takes a callback function and returns a Server
object. Node invokes the callback function whenever another endpoint con-
nects. The connection parameter is a Socket object that you can use to send or
receive data.

Calling server.listen() binds the specified port. In this case, we’re binding TCP
port number 5432. Figure 4, A Node.js server binding a TCP socket for listening,
on page 7 shows this basic setup. The figure shows our one Node.js process
whose server binds a TCP port. Any number of clients—which may or may not
be Node.js processes—can connect to that bound port.

Our server program doesn’t do anything with the connection yet. Let’s fix that
by using it to send some useful information to the client.

Writing Data to a Socket

In Chapter 2, Wrangling the File System, on page ?, we developed some
simple file utilities that would take action whenever a target file changed.
Let’s reuse the file changes as a source of information for our example net-
worked service. This will give us something to code against as we dig into
aspects of Node.js development.

Open your favorite text editor and enter this:

networking/net-watcher.js
'use strict';
const

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwnode/code/networking/net-watcher.js
http://pragprog.com/titles/jwnode
http://forums.pragprog.com/forums/jwnode

Figure 4—A Node.js server binding a TCP socket for listening

fs = require('fs'),
net = require('net'),

filename = process.argv[2],

server = net.createServer(function(connection) {

// reporting
console.log('Subscriber connected.');
connection.write("Now watching '" + filename + "' for changes...\n");

// watcher setup
let watcher = fs.watch(filename, function() {
connection.write("File '" + filename + "' changed: " + Date.now() + "\n");

});

// cleanup
connection.on('close', function() {
console.log('Subscriber disconnected.');
watcher.close();

});

});

if (!filename) {
throw Error('No target filename was specified.');

}

server.listen(5432, function() {
console.log('Listening for subscribers...');

});

Save the file as net-watcher.js. Most of the code here is taken from previous
examples in the book, so it should look pretty familiar. The novel parts to the

• Click HERE to purchase this book now. discuss

Listening for Socket Connections • 7

http://pragprog.com/titles/jwnode
http://forums.pragprog.com/forums/jwnode

net-watcher program begin inside the callback function given to createServer().
This callback function does three things:

• It reports that the connection has been established (both to the client
with connection.write and to the console).

• It begins listening for changes to the target file, saving the returned
watcher object. This callback sends change information to the client using
connection.write.

• It listens for the connection’s close event so it can report that the subscriber
has disconnected and stop watching the file, with watcher.close().

Finally, notice the callback passed into server.listen() at the end. Node invokes
this function after it has successfully bound port 5432 and is ready to start
receiving connections.

Connecting to a TCP Socket Server with Telnet

Now let’s run the net-watcher program and confirm that it behaves the way
we expect. This will require a little terminal juggling.

To run and test the net-watcher program, you’ll need three terminal sessions:
one for the service itself, one for the client, and one to trigger changes to the
watched file. In the first terminal, run the net-watcher program:

$ node --harmony net-watcher.js target.txt
Listening for subscribers...

This program creates a service listening on TCP port 5432. To connect to it,
open a second terminal and use the telnet program like so:

$ telnet localhost 5432
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Now watching target.txt for changes...

Back in the first terminal, you should see this:

Subscriber connected.

Finally, to trigger a change to the watched file, open a third terminal and touch
the file target.txt:

$ touch target.txt

In the telnet terminal, after a moment you should see a line like this:

File 'target.txt' changed: Sat Jan 12 2013 12:35:52 GMT-0500 (EST)

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwnode
http://forums.pragprog.com/forums/jwnode

You can kill the telnet session by typing Ctrl-] and then Ctrl-C . If you do, you’ll
see the following line appear in the first terminal:

Subscriber disconnected.

To terminate the net-watcher service, type Ctrl-C from its terminal.

The following figure outlines the setup we just created. The net-watcher pro-
cess (box) binds a TCP port and watches a file—both resources are shown as
ovals.

Figure 5—A Node.js program watching a file and reporting changes to connected TCP
clients

More than one subscriber can connect and receive updates simultaneously.
If you open additional terminals and connect to port 5432 with telnet, they’ll
all receive updates when you touch the target file.

TCP sockets are useful for communicating between networked computers.
But if you need processes on the same computer to communicate, Unix
sockets offer a more efficient alternative. The net module can create this kind
of socket as well, which we’ll look at next.

Listening on Unix Sockets

To see how the net module uses Unix sockets, let’s modify the net-watcher
program to use this kind of communication channel. Keep in mind that Unix
sockets work only on Unix-like environments.

Open the net-watcher.js program and change the server.listen() section to this:

server.listen('/tmp/watcher.sock', function() {
console.log('Listening for subscribers...');

});

• Click HERE to purchase this book now. discuss

Listening for Socket Connections • 9

http://pragprog.com/titles/jwnode
http://forums.pragprog.com/forums/jwnode

Save the file as net-watcher-unix.js, then run the program as before:

$ node --harmony net-watcher-unix.js target.txt
Listening for subscribers...

To connect a client, we now need nc instead of telnet. nc is short for netcat, a
TCP/UDP socket utility program that also supports Unix sockets.

$ nc -U /tmp/watcher.sock
Now watching target.txt for changes...

Unix sockets can be faster than TCP sockets because they don’t require
invoking network hardware. However, they’re local to the machine.

That concludes the basics of creating network socket servers in Node. We
discovered how to create socket servers and connect to them using common
client utility programs like telnet and nc. This framework will supply the
backdrop for the rest of the examples in the chapter.

Next, we’ll beef up our service by transforming the data into a parsable format.
This will put us in position to develop custom client applications.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwnode
http://forums.pragprog.com/forums/jwnode

