
Extracted from:

Node.js 8 the Right Way
Practical, Server-Side JavaScript That Scales

This PDF file contains pages extracted from Node.js 8 the Right Way, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Node.js 8 the Right Way
Practical, Server-Side JavaScript That Scales

Jim R. Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Candace Cunningham
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-195-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Emulating Synchronous Style with async and await
One of the most powerful new features in Node.js 8 is the introduction of
async functions. Part of the 2017 ECMAScript draft specification, async
functions allow you reap the benefits of Promises for simplifying code flow
while structuring your code in a more natural way.

The key is that unlike a regular function, which always runs to completion,
an async function can be intentionally suspended midexecution to wait on
the resolution of a Promise. Note that this does not violate the central maxim
that JavaScript is single-threaded. It’s not that some other code will preempt
your async function, but rather that you choose to unblock the event loop to
await a Promise.

An example should clarify. Consider this contrived function that returns a
Promise.

const delay = (timeout = 0, success = true) => {
const promise = new Promise((resolve, reject) => {

setTimeout(() => {
if (success) {

resolve(`RESOLVED after ${timeout} ms.`);
} else {

reject(`REJECTED after ${timeout} ms.`);
}

}, timeout);
});
return promise;

};

The delay() function takes two arguments, a timeout in milliseconds and a success
Boolean value that indicates whether the returned Promise should be resolved
(true) or rejected (false) after the specified amount of time. Using the delay()
function is pretty straightforward—you call its .then() and .catch() methods to
assign callback handlers. Here’s an example:

const useDelay = () => {
delay(500, true)

.then(msg => console.log(msg)) // Logs "RESOLVED after 500 ms."

.catch(err => console.log(err)); // Never called.
};

The useDelay() function invokes the delay() to get a Promise that’s scheduled to
be resolved after 500 milliseconds. Whether the Promise is resolved or
rejected, the result is logged to the console.

Now, let’s see what useDelay() would look like as an async function.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

const useDelay = async () => {
try {

const msg = await delay(500, true);
console.log(msg); // Logs "RESOLVED after 500 ms."

} catch (err) {
console.log(err); // Never called.

}
};

First, notice the addition of the async keyword in the function declaration. This
signals that the function can use the await keyword to suspend while resolving
a Promise.

Next, check out the await keyword inside the try{} block, right before the call
to delay(). Inside of an async function, await suspends execution until the
Promise has been settled. If the Promise is resolved, then the await expression
evaluates to the resolved value and the async function picks up where it left off.

On the other hand, if the Promise is rejected, then the rejection value gets
thrown as an exception. In this case, we use the catch{} block to handle it.

Using async functions together with Promises presents a consistent, syn-
chronous coding style for both synchronous and asynchronous operations.
To practice, we’ll use async functions for the remaining bundle APIs that we’ll
be adding.

Providing an Async Handler Function to Express
Open your lib/bundle.js and add the following inside the module.exports function,
after the bundle-creation API you added previously.

web-services/b4/lib/bundle.js
/**
* Retrieve a given bundle.
* curl http://<host>:<port>/api/bundle/<id>
*/

app.get('/api/bundle/:id', async (req, res) => {
const options = {

url: `${url}/${req.params.id}`,
json: true,

};

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwnode2/code/web-services/b4/lib/bundle.js
http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

try {
const esResBody = await rp(options);
res.status(200).json(esResBody);

} catch (esResErr) {
res.status(esResErr.statusCode || 502).json(esResErr.error);

}
});

This code block sets up a handler for the /bundle/:id route, which will allow us
to retrieve a book bundle by its ID. Note the use of async before the function
parameters in the opening line to indicate that we’re using an async function.
Inside the async function, like with other route handlers, the code proceeds
in two parts: the setup of options and the request to Elasticsearch.

After setting up the options, we use a try/catch block to handle the success
and failure modes of the Elasticsearch request. We issue the Elasticsearch
request itself with the expression await rp(options). This causes the async function
to suspend while waiting for the Promise to be settled.

If the Promise is resolved, then the return value of the await expression will
be the Elasticsearch response body. In this case, we send it onward with a
200 OK status via the Express response object, res.

If the Promise is rejected, then the await expression throws the rejection value
as an exception, which we catch and process. In this case, the rejection value
is an object with rich information about the nature of the failure. We use that
object’s .statusCode and .error properties to close out the Express response.

Let’s try this out using curl and jq. Open the terminal where you saved the
BUNDLE_ID earlier and run the following command:

$ curl -s localhost:60702/api/bundle/$BUNDLE_ID | jq '.'
{

"_index": "b4",
"_type": "bundle",
"_id": "AVuFkyXcpWVRyMBC8pgr",
"_version": 1,
"found": true,
"_source": {

"name": "light reading",
"books": []

}
}

• Click HERE to purchase this book now. discuss

Providing an Async Handler Function to Express • 7

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

The bundle object itself is in the _source property of this object. You can also
try getting a bundle for a nonexistent ID to see what that returns.

$ curl -s localhost:60702/api/bundle/no-such-bundle | jq '.'
{

"_index": "b4",
"_type": "bundle",
"_id": "no-such-bundle",
"found": false

}

Back in your terminal that’s running Node.js, you should see lines like the
following:

GET /api/bundle/AVuFkyXcpWVRyMBC8pgr 200 60.512 ms - 133
GET /api/bundle/no-such-bundle 404 40.986 ms - 69

You should know one quick thing about the try/catch block before we move
on. Consider this bad implementation that omits the try/catch block:

web-services/b4/lib/bundle.js
// BAD IMPLEMENTATION! async Express handler without a try/catch block.
app.get('/api/bundle/:id', async (req, res) => {

const options = {
url: `${url}/${req.params.id}`,
json: true,

};

const esResBody = await rp(options);
res.status(200).json(esResBody);

});

What would happen if the Promise returned by the rp() call was rejected instead
of resolved? Do you have a guess?

Let’s try it out. Comment out the try/catch lines from your async function,
then save the file. Then try again to access a nonexistent bundle with curl
using the verbose flag.

$ curl -v localhost:60702/api/bundle/no-such-bundle
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 60702 (#0)
> GET /api/bundle/no-such-bundle HTTP/1.1
> Host: localhost:60702
> User-Agent: curl/7.47.0
> Accept: */*
>

You should notice two things. First, the curl call never seems to terminate. It
just hangs there after sending the request but receiving no response.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwnode2/code/web-services/b4/lib/bundle.js
http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

The second thing to notice is the warning messages in the Node.js terminal.

(node:16075) UnhandledPromiseRejectionWarning: Unhandled promise rejection
(rejection id: 1): StatusCodeError: 404 - {"_index":"b4","_type":"bundle",
"_id":"no-such-bundle","found":false}

(node:16075) DeprecationWarning: Unhandled promise rejections are deprecated.
In the future, Promise rejections that are not handled will terminate the
Node.js process with a nonzero exit code.

It turns out that indeed the await clause triggers the rejection object to be
thrown, but since it’s not caught inside the async function, it bubbles up to
a Promise returned by the async function itself. That Promise is rejected, but
since its rejection wasn’t handled, we get warnings.

The moral of the story is always provide a try/catch block when using an
async function as an Express route handler. More generally, it’ll depend on
the purpose of your async function, but as a rule of thumb you should con-
sider the consequence of rejected Promises and take action accordingly.

Now let’s move on to adding a few more APIs.

Setting the Bundle Name with PUT
Now we’ll use an async function to implement an API endpoint that allows
setting the name property of a book bundle.

Open your lib/bundle.js and add the following, after the GET bundle API.

web-services/b4/lib/bundle.js
/**
* Set the specified bundle's name with the specified name.
* curl -X PUT http://<host>:<port>/api/bundle/<id>/name/<name>
*/

app.put('/api/bundle/:id/name/:name', async (req, res) => {
const bundleUrl = `${url}/${req.params.id}`;

try {
const bundle = (await rp({url: bundleUrl, json: true}))._source;

bundle.name = req.params.name;

const esResBody =
await rp.put({url: bundleUrl, body: bundle, json: true});

res.status(200).json(esResBody);

} catch (esResErr) {
res.status(esResErr.statusCode || 502).json(esResErr.error);

}
});

• Click HERE to purchase this book now. discuss

Providing an Async Handler Function to Express • 9

http://media.pragprog.com/titles/jwnode2/code/web-services/b4/lib/bundle.js
http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

Inside the async function, first we build out the bundleUrl based on the provided
ID. Next, we begin the try/catch block in which we’ll perform all of the Elas-
ticsearch requests and response handling.

Take a look at the first line inside the try{} block. Here, we’re using await with
rp() to suspend as before, but it’s a parenthesized expression. Outside of the
expression, we use ._source to pull out just the bundle object from the broader
Elasticsearch response. This demonstrates that the results of an awaited
Promise can be used in more complex expressions.

Once we have the bundle object, we overwrite its name field with the provided
name parameter value. Then it’s time to PUT that object back into Elastic-
search with rp.put(). The resulting Elasticsearch response body should contain
information about the successful operation, which we send back through the
Express response.

As usual, if anything went wrong we catch the Elasticsearch response error
and report back through the Express response. One you save the file, you
can try it out.

In the same terminal where you have the BUNDLE_ID still saved as an environ-
ment variable, run the following to set the bundle name to foo:

$ curl -s -X PUT localhost:60702/api/bundle/$BUNDLE_ID/name/foo | jq '.'
{

"_index": "b4",
"_type": "bundle",
"_id": "AVuFkyXcpWVRyMBC8pgr",
"_version": 2,
"result": "updated",
"_shards": {

"total": 2,
"successful": 1,
"failed": 0

},
"created": false

}

You can confirm that it was indeed saved by retrieving the bundle using the
GET bundle API.

$ curl -s localhost:60702/api/bundle/$BUNDLE_ID | jq '._source'
{

"name": "foo",
"books": []

}

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

Note that Express routes treat forward slashes as delimiters, so if you wanted
to set the name of a bundle to foo/bar, you’d need to URI-encode the slash
as %2F. The same goes for other special characters such as question marks
and hash symbols.

Now let’s move on to more complex route handlers. Next you’ll learn how to
manage concurrent unsettled Promises to make simultaneous asynchronous
requests.

• Click HERE to purchase this book now. discuss

Providing an Async Handler Function to Express • 11

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

