
Extracted from:

Interface-Oriented Design

This PDF file contains pages extracted from Interface-Oriented Design, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 3

Interface Ingredients
Now that we’ve covered the basics of interfaces, it’s time to examine the

ingredients of interfaces. Almost every interface you employ or develop

has a combination of these ingredients, so understanding them helps

you appreciate the whole pie. In this chapter, we’ll look at the spectrum

of interfaces from data-oriented to service-oriented and cover the trade-

offs in three distinct approaches to data-access interfaces.

You can always adapt an interface paradigm from one type to another

to make it more amenable to your project, so we’ll explore how to adapt

a stateful interface to a stateless one. Then we’ll look at transforming

a textual interface into a programmatic one and creating an interface

from a set of existing related methods.

3.1 Data Interfaces and Service Interfaces

There is a spectrum between data interfaces and service interfaces. We

use the term data interface when the methods correspond to those in

a class that contains mostly attributes. The methods in the interface

typically set or retrieve the values of the attributes.1 We use the term

service interface for a module whose methods operate mostly on the

parameters that are passed to it.

One example of a data interface is the classic Customer class. Customer

usually has methods like

• set_name(String name)

1Data interfaces also correspond to JavaBeans or pretty much any class that is a

wrapper around attributes with a bunch of getter/setters.

DATA INTERFACES AND SERVICE INTERFACES 33

è é ê ë ì í î ï ð ð ñ ò ë ò ó ô ë î ï õ ò ö î ÷ ÷ø ù ú ûü ý þ þ ý ø ÿ � ù � � � û � � � � � � � û � �� � � � û ø � � ü ù þ ù ø � û � 	
 þ þ ù �

� ï ñ î ï � ô ë ï ð ð ê î ï � ó ö î ó ô ë î ï õ ò ö î ÷ ÷
� � ü ú ý � � ù ø �
 � � û � � ù ø �
 � � û � � � � � û � �� ù ø � û þ � ù ø �
 � � û � � ù ø �
 � � û � � � � � û � �

Figure 3.1: Data vs. service interface

• set_billing_address(Address billing_address)

• get_current_balance().

Each of these methods affects or uses an attribute in the class. Imple-

mentations of data interfaces have state, which consists of the set of

values of all attributes in the class.

Service interfaces have methods that act on the parameters passed to

them, rather than the attributes of the implementation, for example

the methods submit_an_order(Order an_order) and cancel_an_order(Order

an_order). Figure 3.1 shows how data interfaces have just attributes

and service interfaces have just methods.

Service interface implementations usually have no attributes or only

ones that are associated with providing the service, such as connection

information that identifies where to submit an order or where to find

the current price for a stock. Implementations of service interfaces may

have no state, other than that of internal configuration values such as

this connection information.

This data versus service interface comparison is not pure black and

white, but rather a spectrum. An interface can range from a data trans-

fer object (DTO), whose methods refer only to attributes of the object,

to a command interface, which usually contains only service methods.

We could move away from a pure data interface by adding methods

to the Customer interface. We might add charge_an_amount(), which

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

DATA INTERFACES AND SERVICE INTERFACES 34

Entities, Control, Boundary

In Object-Oriented Software Engineering, Ivar Jacobsen intro-
duced three stereotypes for objects: entity, boundary, and
control. An entity depicts long-lived objects. Boundary objects
communicate between the system and the actors (users and
external systems). A control object represents behavior related
to a specific use case. It communicates with boundary objects
and entity objects to perform an operation.

These stereotypes relate to the data and service interfaces.
Data interfaces correspond to the entity objects. The under-
lying data mechanism (e.g., database table or XML file) is
opaque to the user of the entity object. An interface such as
Pizza, which contains just the size and toppings, is an entity.

A boundary corresponds to a service interface. You push a
button on a GUI or make a call to a method, and the underlying
service is performed. The PizzaOrdering interface presented in
Chapter 1 is a boundary interface.

A controller also corresponds to a service interface. Its methods
are typically called by a boundary interface. It can embody
business rules or services. A PizzaMaker that controls the mak-
ing of the Pizza() could exist between the PizzaOrdering() and a
Pizza(). The PizzaMaker() would be a controller.

alters current_balance; mail_statement(), which mails the current_balance

to the address; or is_credit_worthy(), which applies some business rules

to determine whether to extend credit to the customer.

Let’s take the PizzaOrdering interface in the first chapter and transform

it into two interfaces on each end of the spectrum. First we make a

pure DTO—a Pizza class containing just data on the pizza. For example:

class Pizza

set_size(Size)

set_topping(Topping)

Size get_size()

Topping [] get_toppings()

We now create a service interface that accepts a Pizza and places the

order:

interface PizzaOrderer

TimePeriod order_pizza(Pizza)

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

DATA ACCESS INTERFACE STRUCTURES 35

The method calling this interface first creates a Pizza and then passes

the Pizza to order_pizza().

We can turn the Pizza class into a class endowed with more behavior,

which is a guideline for object-oriented design. Let’s add a method so

that a Pizza orders itself:

class Pizza

// as above, plus:

order()

Pizza’s order() method could call an implementation of the PizzaOrderer

interface. One implementation could communicate the order over the

telephone; another implementation could fax it or email it. The user

of Pizza does not need to know about PizzaOrderer, unless they intend to

change the implementation that order() uses.2

In Chapter 1, you ordered a pizza over the phone. If PizzaOrderer repre-

sented a phone-based system, before accessing order_pizza(), you need

to call the shop. If we include that operation in this interface, it would

look like this:

interface PizzaOrderer

call_up()

TimePeriod order_pizza(Pizza)

hang_up()

Now PizzaOrderer represents a service provider interface, a variation of

the service interface. A service provider adds methods to the interface

that control the life cycle of the service provider. These methods are

often called initialize, start, or stop. Java applets, servlets, and session

beans are examples of service provider interfaces.

3.2 Data Access Interface Structures

You may run across different paradigms for interfaces that access data,

so it’s a good idea to appreciate the differences among them. An inter-

face can provide sequential or random retrieval of data. Users can

either pull data or have it pushed upon them.

2We explore ways to configure different implementations in Chapter 7.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

DATA ACCESS INTERFACE STRUCTURES 36

Sequential versus Random Retrieval

Data can be available in a sequential or random manner. For exam-

ple, the Java FileInputStream class allows only sequential access, while

RandomAccessFile allows access to the data in a file in any order.

The same dichotomy exists within collections and iterators. An iterator

interface allows access to a single element in a collection at a particular

time. Some styles of iterators, such as Java’s Iterator or C++’s forward

iterators, permit only one-way access. You have to start at the begin-

ning of the collection and continue in one direction to the end. On

the other hand, a vector or array index, or a C++ random-access iter-

ator, allows random access to any element in the set. If you have data

available with only sequential access and you want it to have random

access, you can build an adapter. For example, you can create a vector

and fill it with the elements from an iterator.

Other examples of sequential vs. random access are two Java classes

for accessing the data in an XML file. The Simple API for XML (SAX)

parser provides for sequential access to the XML elements; SAX does

not keep the data in memory. On the other hand, the Document Object

Model (DOM) allows random access. It creates an in-memory represen-

tation of the XML data. Note that a DOM parser can use a SAX parser

to help create the memory representation. These two interfaces have

corresponding advantages and disadvantages.

SAX: SEQUENTIAL ACCESS

Advantage—requires less resources to parse the file

Disadvantage—application cannot change the XML data

DOM: RANDOM ACCESS

Advantage—application can change the XML data

Disadvantage—requires memory to store the entire document

We’ll revisit SAX and DOM in a little more detail in a later section.

Pull and Push Interfaces

Interfaces move data in one of two ways: push or pull. You ask a pull-

style interface—for example, a web browser—for data. Whenever you

desire information, you type in a URL, and the information is returned.

On the other hand, a push-style interface transfers data to you. An

email subscription is a push-style interface. Your mail program receives

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

DATA ACCESS INTERFACE STRUCTURES 37

information whenever the mail subscription program sends new mail.

You don’t ask for it; you just get it.

You can use either a pull style or a push style when going through a

collection.3 An example of a pull style is the typical iteration through a

list or array:

Item an_item

for_each an_item in a_list

{

an_item.print()

}

For each element in a_list, the print() method is explicitly called. The

push style for this operation is as follows:

print_item(Item passed_item)

{

passed_item.print()

}

a.list.for_each(print_item)

The for_each() method iterates through a_list. For each item, for_each()

calls the print_item() method, which is passed the current item on the

list.

For each language, the actual code for the push style is different. For

example, in C++, you can use the for_each() function in the Standard

Template Library (STL). With this function, each item in the vector is

pushed to the print_item() function.

void print_item(Item item)

{

cout << item <<' ' ;

}

vector <Item> a_list;

for_each(a_list.begin(), a_list.end(), print_item);

In Ruby, the code could be as follows:

a_list = [1,2,3]

a_list.each { |passed_item| passeditem.print_item()}.

PUSH STYLE

Advantage—can be simpler code, once paradigm is understood

3Design Patterns refers to pull and push styles for a collection as internal and external

iterators.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

DATA ACCESS INTERFACE STRUCTURES 38

� � �
� � �

� � � � � � � � � � � � �

� � � � ! " # � � $ � ! % & '
� � � (

� � � �

) *+ , - . / , / 0 12 3 2 + * 0

Figure 3.2: Examples of data interfaces

PULL STYLE

Advantage—appears as a common control style (e.g., loop) in mul-

tiple languages

One from Each Column

Pull/push style and sequential/random styles can be intermixed in

combinations. As an example of a set of combinations in a specific

area, let’s revisit XML parsing. SAX is push/sequential; DOM is pull/

random. There is also a pull-style sequential interface called XMLPull-

Parser.4

Figure 3.2 shows how these three styles relate. The “No implemen-

tation” box shows a variation for which no current implementation

exists.5 Depending on what elements you want to retrieve from an XML

file, what you want to do with the elements, and memory constraints,

you choose one of these interface styles to create simpler code. To com-

pare how you might employ each of these versions, let’s take a look

at some logic in pseudocode. In each of these examples, we print the

count for one element in an XML file. The XML file looks like this:

4See http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/XmlPullParser.html

for full details.
5We can’t think of a need for this variation, so that may be why no one has created

one.

CLICK HERE to purchase this book now.

http://www.xmlpull.org/v1/doc/api/org/xmlpull/v1/XmlPullParser.html
http://www.pragmaticprogrammer.com/titles/kpiod

Competitive Edge
For a full list of all of our current titles, as well as announcements of new titles, please

visit www.pragmaticprogrammer.com.

Practices of an Agile Developer
Agility for individuals. See the personal

habits, ideas, and approaches of success-

ful agile software developers. • Learn how

to improve your software development pro-

cess • See what real agile practices feel like

• Keep agile practices in balance • Avoid

the common temptations that kill projects •

Harness the power of continuous development

Practices of an Agile Developer: Working in

the Real World

Venkat Subramaniam and Andy Hunt

(200 pages) ISBN: 0-9745140-8-X. $29.95

Ship It!
Agility for teams. The next step from the

individual focus of Practices of an Agile Devel-

oper is the team approach that let’s you Ship

It!, on time and on budget, without excuses.

You’ll see how to implement the common tech-

nical infrastructure that every project needs

along with well-accepted, easy-to-adopt, best-

of-breed practices that really work, as well as

common problems and how to solve them.

Ship It!: A Practical Guide to Successful

Software Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

www.pragmaticprogrammer.com
http://pragmaticprogrammer.com/catalog

Cutting Edge
Learn how to use the popular Ruby programming language from the Pragmatic Program-

mers: your definitive source for reference and tutorials on the Ruby language and exciting

new application development tools based on Ruby.

The Facets of Ruby series includes the definitive guide to Ruby, widely known as the

PickAxe book, and Agile Web Development with Rails, the first and best guide to the

cutting-edge Ruby on Rails application framework.

Programming Ruby (The PickAxe)

The definitive guide to Ruby programming.

• Up-to-date and expanded for Ruby ver-

sion 1.8. • Complete documentation of all the

built-in classes, modules, methods, and stan-

dard libraries. • Learn more about Ruby’s

web tools, unit testing, and programming phi-

losophy.

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler

and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

Agile Web Development with Rails

A new approach to rapid web development.

Develop sophisticated web applications

quickly and easily • Learn the framework of

choice for Web 2.0 developers • Use incre-

mental and iterative development to create the

web apps that users want • Get to go home

on time.

Agile Web Development with Rails:

A Pragmatic Guide

Dave Thomas and David Heinemeier Hansson

(570 pages) ISBN: 0-9766940-0-X. $34.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

	Preface
	Road Map
	Who Should Read This Book
	About the Cover
	So, What Else Is in Here?
	Acknowledgments

	All about Interfaces
	Introduction to Interfaces
	Pizza-Ordering Interface
	Real-Life Interfaces
	Things to Remember

	Interface Contracts
	The Three Laws of Interfaces
	Design by Contract
	Testing Interfaces against Contracts
	Levels of Contracts
	Contractual Quality
	Things to Remember

	Interface Ingredients
	Data Interfaces and Service Interfaces
	Data Access Interface Structures
	Alternative Interfaces
	Stateless versus Stateful Interfaces
	Transformation Considerations
	Multiple Interfaces
	Things to Remember

	What Should Be in an Interface?
	Cohesiveness
	A Printer Interface
	Coupling
	Interface Measures
	Things to Remember

	Inheritance and Interfaces
	Inheritance and Interfaces
	Polymorphism
	Hierarchies
	An Interface Alternative for InputStream
	Things to Remember

	Remote Interfaces
	Introduction
	Procedural and Document Interfaces
	Facets of External Interfaces
	Discovery of Services
	More on Document Style
	Security
	Testing
	Things to Remember

	Developing with Interfaces
	A Little Process
	The Agile Model
	Vision
	Conceptualization
	Analysis and Design
	Interface-Oriented Design
	Design
	Implementation
	Things to Remember

	Interfaces in the Real World
	Link Checker
	Vision
	Conceptualization
	Analysis
	Design
	Tests
	Implementation
	Retrospective
	Things to Remember

	Web Conglomerator
	Vision
	Conceptualization
	Analysis
	Testing
	Design
	Implementation
	Retrospective
	Things to Remember

	Service Registry
	Vision
	Conceptualization
	Analysis
	Design
	Implementation
	Published Interface
	The Next Iterations
	Things to Remember

	Patterns
	Introduction
	Factory Method
	Proxy
	Decorator
	Adapter
	Façade
	Composite
	Things to Remember

	Appendix
	More about Document Style
	Service-Oriented Architecture
	Collections and Collection Methods
	Configuration
	Another Service Registry Iteration
	Other Interface Issues

