
Extracted from:

Interface-Oriented Design

This PDF file contains pages extracted from Interface-Oriented Design, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Chapter 6

Remote Interfaces
Systems today are moving away from self-contained programs; they

tend to interact with a number of other programs on remote hosts.

Dealing with remote interfaces involves several more issues than does

dealing with local interfaces, so we’ll explore these facets now.

Many remote interfaces use a document style, rather than a procedu-

ral style. Document-style interfaces have a different paradigm from

procedural-style interfaces and are less familiar to programmers, so we

will investigate documents in some detail. We’ll also examine how many

of the concepts we discussed before are applicable to remote interfaces,

such as statefulness versus statelessness.

6.1 Introduction

If you are physically in the pizza parlor, you can see the order taker.

You are aware whether he is writing down your order or discussing last

night’s ball game with the cook. If you are local, you don’t have to worry

about failure to connect.

The pizza interface we introduced in the first chapter is really a remote

interface: you make a connection over the phone network. Dealing with

a remote interface is different from a local interface. A whole host of

problems can occur that you might need to handle.

What if the phone is busy? Do you try the dialing again, or do you

try another pizza parlor? Is the busy phone because of a failure in the

phone company or a failure in the pizza parlor’s phone?

INTRODUCTION 84

What if it rings but no one answers? Do you try again, thinking you

may have dialed the wrong number? Do you assume that they aren’t

open?

Suppose you get cut off in the middle of the call. Do you call back?

External Interfaces

The problems of pizza ordering exist in any external interface. An exter-

nal interface is one called by other processes (either local or remote).

External interfaces differ from local interfaces by network considera-

tions, by nonhomogeneity of hosts, and by multiple process interac-

tions.1

If an entire software system is contained within a single process, the

system fails if the process fails. With a system consisting of multiple

processes, a calling process (e.g., a client) has to handle the unavail-

ability of other processes (e.g., a server). The client usually continues to

run in spite of the failure of servers, but it needs either to communicate

the server failure to the user or to act on that failure in a transparent

manner, as per the Third Law of Interfaces.

Remote interfaces are external interfaces that are accessed over a net-

work. In addition to server failure, with a network you may have a

network delay or a network failure. Note that if you are unable to con-

nect to a server, it is difficult to determine whether the network is down

or whether the server is down. Likewise, a delay may be due to an

overloaded network or an overloaded server that is handling too many

clients. In either case, the client needs to handle the failure.

With nonhomogeneity, the client and the server may be different pro-

cessor types (e.g., IBM mainframe versus PC). Even on a local machine,

where processor types are not a consideration, the caller and server

may be written in different programming languages.

Network Disruption

What would you do if you were ordering a pizza by phone and the call

dropped before you heard how long it was going to take? You’d call

back. You’d try to continue to describe the pizza you were ordering. But

1A local interface is usually called by only one process, although it may be called by

multiple threads within that process. A remote interface can typically be concurrently

called by multiple remote processes.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

PROCEDURAL AND DOCUMENT INTERFACES 85

the pizza shop says, “I’ve had hundreds of orders in the last minute for

just that type of pizza.” You don’t really want to order a second pizza.

And the store owner doesn’t want to make an unclaimed pizza. How

would we change the pizza-ordering interface to avoid this?

The store owner could take some identification at the beginning of a

call—a name or a phone number. If the circuit is broken, you call back

and give the same name or phone number. If the order taker determines

the name corresponds to one of the uncompleted orders, he pulls it off

the shelf and resumes at the appropriate place in the order sequence.2

Getting initial identification is a form of planning for the possibility of

communication disruption. The interface protocol should assume that

the network may go down. In a manner similar to the pizza shop, inter-

faces can use client-generated IDs to ensure that service invocations

are not duplicated. For example, when credit card transactions are

submitted to a bank, the merchant identifies each transaction with a

unique ID. If the connection is broken in the middle of transmitting a

transaction, the merchant resubmits transactions that have not been

explicitly confirmed. The bank knows by the ID for the particular mer-

chant whether a transaction has already been posted. If the transac-

tion has been posted, the bank merely confirms the transaction without

reposting it.

6.2 Procedural and Document Interfaces

In our example in Chapter 1, you called the pizza shop over the phone.

Your pizza shop may also accept fax orders. What is different about

making a phone call versus sending a fax order? In either case, the

order needs to be put into terms both you and the pizza shop under-

stand. With the voice system, you execute a series of operations to

create an order. With the fax, you have an order form that defines the

required and optional data.

Problems are discovered immediately in the voice system. For example,

you can ask for anchovies and get an immediate response. The voice on

the other end can say “nope,” meaning either they never have anchovies

2Some readers might note that a name such as Jim might be given for different orders.

If the given name matches a previous name, the order taker may inform you that you have

to give a different name. A phone number is not only good for identification but also for

verification. The store owner can check the caller ID against the phone number to see

whether it’s the same one you said.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

PROCEDURAL AND DOCUMENT INTERFACES 86

(a permanent error) or they don’t have any today (a temporary error).

In either case, you can make up your mind whether you want to have

an anchovyless pizza or find some other pizza place.

With the a fax-based system, you fill out an order and await a response.

The response may be a fax with the time till delivery or a fax saying,

“Don’t have any.” If the latter, you need to alter your order and resubmit

it. You may wonder whether your order was received. Since you may

have to wait a while to get a fax back, it is harder to determine when

to resend the order. The pizza parlor’s fax may be out of paper. The

scanner for the return fax may not be working. The order may have

been put onto a pile. Only when the order is retrieved from the pile is

a fax returned. We shall see how these issues of ordering by fax have

parallels in remote interfaces.

External interfaces can use either procedural style or document style.

A procedural interface looks like the interfaces we’ve been describing

in this book. On the other hand, document-style interfaces use sets of

data messages, similar to the fax-based pizza order.

For the most flexibility, the client (interface user) and the server (inter-

face implementation provider) should be loosely coupled in terms of

platform and language. A client written in any language should be able

to access the server. You can accomplish this decoupling with either

style.

Procedural Style

You can use Common Object Request Broker Architecture (CORBA) to

define procedural-style interfaces that are both language and platform

independent.3 With CORBA, you specify the interface with the Interface

Definition Language (IDL).4 IDL looks a lot like a C++ header or a Java

interface. A transformation program turns an IDL declaration into code

stubs appropriate for a particular language and platform. An example

of an interface defined in IDL is as follows:

enum Size {SMALL, MEDIUM, LARGE};

enum Toppings {PEPPERONI, MUSHROOMS, PEPPERS, SAUSAGE};

3You can define remote interfaces in a language-dependent manner, such as Java’s

Remote Method Invocation. You could also define them in a platform-dependent manner,

such as Window’s Distributed Component Object Model (DCOM).
4See http://www.omg.org for more information about CORBA and IDL.

CLICK HERE to purchase this book now.

http://www.omg.org
http://www.pragmaticprogrammer.com/titles/kpiod

PROCEDURAL AND DOCUMENT INTERFACES 87

interface PizzaOrdering

{

exception UnableToDeliver(string explanation);

exception UnableToMake(string explanation);

typedef Toppings ToppingArray[5];

set_size(in Size the_size) raises (UnableToMake);

set_toppings(ToppingArray toppings) raises (UnableToMake);

set_address(in string street_address);

TimePeriod get_time_till_delivered() raises (UnableToDeliver);

}

Procedural-style remote interfaces look familiar to programmers. Calls

to methods in remote interfaces (a Remote Procedure Call [RPC]) appear

in your code as if they were calls to local interfaces. The only major dif-

ference is that the code must handle communication failure situations.

RPCs are typically used for an immediate request/response in interac-

tive situations. A client that called the PizzaOrdering interface can find

out immediately whether the shop cannot make the pizza.

Procedural-style interfaces tend to be fine-grained. For example, they

frequently contain operations for accessing individual values such as

set_size() in the PizzaOrdering interface.

Document Style

With document style, the client and server interchange a series of data

messages (documents). For a pizza order, the sequence might start with

a document:

Document: PizzaOrder

Size

Toppings

Address

The response could be either like this:

Document: SuccessResponse

TimePeriod time_to_deliver

or like this:

Document: ErrorResponse

String error_explanation

You may be less familiar with document-style interfaces. The docu-

ments represent a series of messages transmitted between the client

and the service provider. The protocol is defined by the sequence of

messages. We’ll explore a typical sequence later in this chapter. Mes-

sages are not necessarily processed immediately. Response documents,

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

FACETS OF EXTERNAL INTERFACES 88

such as SuccessResponse, may come almost immediately. However, they

may also be delayed. A client using the document interface to order

pizzas may not instantly find out whether the requested pizza can be

made.

A document-style interface tends to be very coarse-grained. For exam-

ple, a PizzaOrder document that contains the size and toppings is sent

in a single operation, like this:5

interface Ordering

submit_order(PizzaOrder)

PROCEDURAL STYLE

Advantage—remote and local interfaces can appear the same

Disadvantage—can require more communication (especially if

fine-grained)

DOCUMENT STYLE

Advantage—can require less communication

Disadvantages—style is less familiar to programmers

6.3 Facets of External Interfaces

We discussed several facets of interfaces in Chapter 3. Now we’ll exam-

ine some additional facets of external interfaces.

Synchronous versus Asynchronous

In Chapter 3, we described asynchronous event handling using the

Observer pattern. Likewise, communication between a client and a

server can be either synchronous or asynchronous. With synchronous

interfaces, the client does not end communication until a result is

returned.

With asynchronous interfaces, a result is returned at some other time

after the client has ended the original communication. For example,

documents are often placed on message queues. The client creates a

5The most general document interface consists of three operations:

Request/response—Document send_document_and_get_response(Document)

Request—void send_document(Document)

Response—Document receive_document()

That’s so coarse-grained, you can transmit anything. (OK, maybe not anything, but

almost anything).

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

FACETS OF EXTERNAL INTERFACES 89

document (message) and puts it onto a message queue. The client usu-

ally continues processing, handling other events. At some time, the

server retrieves the message from the queue and processes the docu-

ment. It then returns a response document, either directly to the client

or back onto the queue for retrieval by the client.

Two typical combinations of modes for applications that use exter-

nal interfaces are asynchronous/document (e.g., message queues) and

synchronous/procedural (e.g., RPCs). You could consider the World

Wide Web to be an synchronous/document interface: you send a doc-

ument (e.g., a filled-in form) and receive a document (a new web page)

in return. The least frequently used combination is asynchronous/

procedural.

SYNCHRONOUS

Advantage—practically immediate response

Disadvantage—cannot scale up as well

ASYNCHRONOUS

Advantage—can scale well, especially with document queues

Disadvantage—documents should be validated on client before

transmitting

Stateful versus Stateless

With remote interfaces, the distinction between stateful and stateless

interfaces is more critical. A server that keeps state for clients may not

be able to handle as many clients as a server that does not keep state.

For example, many web sites have shopping carts. In a stateful inter-

face, the contents of the shopping cart are kept in a semipersistent stor-

age on the server. Each new connection from a client (i.e., a browser)

creates a new shopping cart that is assigned a SessionID. The SessionID

is the key that identifies the data for a particular client on the server.

The browser returns this SessionID with each request for another web

page. The server uses the SessionID to retrieve current contents of the

shopping cart.

In a stateless interface, the server does not keep any state. For exam-

ple, with a Google search, the URL passes the search parameters every

time. If Google keeps any information on a search, it is for performance

reasons, rather than for interface reasons.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/kpiod

Competitive Edge
For a full list of all of our current titles, as well as announcements of new titles, please

visit www.pragmaticprogrammer.com.

Practices of an Agile Developer
Agility for individuals. See the personal

habits, ideas, and approaches of success-

ful agile software developers. • Learn how

to improve your software development pro-

cess • See what real agile practices feel like

• Keep agile practices in balance • Avoid

the common temptations that kill projects •

Harness the power of continuous development

Practices of an Agile Developer: Working in

the Real World

Venkat Subramaniam and Andy Hunt

(200 pages) ISBN: 0-9745140-8-X. $29.95

Ship It!
Agility for teams. The next step from the

individual focus of Practices of an Agile Devel-

oper is the team approach that let’s you Ship

It!, on time and on budget, without excuses.

You’ll see how to implement the common tech-

nical infrastructure that every project needs

along with well-accepted, easy-to-adopt, best-

of-breed practices that really work, as well as

common problems and how to solve them.

Ship It!: A Practical Guide to Successful

Software Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

www.pragmaticprogrammer.com
http://pragmaticprogrammer.com/catalog

Cutting Edge
Learn how to use the popular Ruby programming language from the Pragmatic Program-

mers: your definitive source for reference and tutorials on the Ruby language and exciting

new application development tools based on Ruby.

The Facets of Ruby series includes the definitive guide to Ruby, widely known as the

PickAxe book, and Agile Web Development with Rails, the first and best guide to the

cutting-edge Ruby on Rails application framework.

Programming Ruby (The PickAxe)

The definitive guide to Ruby programming.

• Up-to-date and expanded for Ruby ver-

sion 1.8. • Complete documentation of all the

built-in classes, modules, methods, and stan-

dard libraries. • Learn more about Ruby’s

web tools, unit testing, and programming phi-

losophy.

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler

and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

Agile Web Development with Rails

A new approach to rapid web development.

Develop sophisticated web applications

quickly and easily • Learn the framework of

choice for Web 2.0 developers • Use incre-

mental and iterative development to create the

web apps that users want • Get to go home

on time.

Agile Web Development with Rails:

A Pragmatic Guide

Dave Thomas and David Heinemeier Hansson

(570 pages) ISBN: 0-9766940-0-X. $34.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

http://pragmaticprogrammer.com/catalog

	Preface
	Road Map
	Who Should Read This Book
	About the Cover
	So, What Else Is in Here?
	Acknowledgments

	All about Interfaces
	Introduction to Interfaces
	Pizza-Ordering Interface
	Real-Life Interfaces
	Things to Remember

	Interface Contracts
	The Three Laws of Interfaces
	Design by Contract
	Testing Interfaces against Contracts
	Levels of Contracts
	Contractual Quality
	Things to Remember

	Interface Ingredients
	Data Interfaces and Service Interfaces
	Data Access Interface Structures
	Alternative Interfaces
	Stateless versus Stateful Interfaces
	Transformation Considerations
	Multiple Interfaces
	Things to Remember

	What Should Be in an Interface?
	Cohesiveness
	A Printer Interface
	Coupling
	Interface Measures
	Things to Remember

	Inheritance and Interfaces
	Inheritance and Interfaces
	Polymorphism
	Hierarchies
	An Interface Alternative for InputStream
	Things to Remember

	Remote Interfaces
	Introduction
	Procedural and Document Interfaces
	Facets of External Interfaces
	Discovery of Services
	More on Document Style
	Security
	Testing
	Things to Remember

	Developing with Interfaces
	A Little Process
	The Agile Model
	Vision
	Conceptualization
	Analysis and Design
	Interface-Oriented Design
	Design
	Implementation
	Things to Remember

	Interfaces in the Real World
	Link Checker
	Vision
	Conceptualization
	Analysis
	Design
	Tests
	Implementation
	Retrospective
	Things to Remember

	Web Conglomerator
	Vision
	Conceptualization
	Analysis
	Testing
	Design
	Implementation
	Retrospective
	Things to Remember

	Service Registry
	Vision
	Conceptualization
	Analysis
	Design
	Implementation
	Published Interface
	The Next Iterations
	Things to Remember

	Patterns
	Introduction
	Factory Method
	Proxy
	Decorator
	Adapter
	Façade
	Composite
	Things to Remember

	Appendix
	More about Document Style
	Service-Oriented Architecture
	Collections and Collection Methods
	Configuration
	Another Service Registry Iteration
	Other Interface Issues

