
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Structuring Chat Messages in JSON
Instead of sending messages as unadorned strings, as we did in the last
chapter, let’s use JSON to structure some metadata with each message sent
over the chat. To start with, the remote peer will use the metadata’s content
to acknowledge each message received. We can even add a little CSS so that,
on the sender’s side, there is a visual difference between messages that have
been received by the remote peer and those that have not.

Preparing and Sending JSON
Sending JSON isn’t much different from sending strings: JSON, or JavaScript
Object Notation, is a fancy kind of string. Let’s rework handleMessageForm() so
that it builds a small object literal on message in place of the message strings
we relied on in the previous chapter. We’ll set up two properties on the message
object: the text of the message, and a timestamp, which uses the Date.now() class
method to generate a Unix timestamp in milliseconds.1 The timestamp will
uniquely identify each sent message:

demos/dc-chat-json/js/main.js
function handleMessageForm(event) {

event.preventDefault();
const input = document.querySelector('#chat-msg');
const message = {};➤

message.text = input.value;➤

message.timestamp = Date.now();➤

if (message.text === '') return;➤

appendMessage('self', '#chat-log', message);

sendOrQueueMessage($peer, message);

input.value = '';
}

If you’re like me, you much prefer working with JavaScript objects directly.
Let’s set up the sendOrQueueMessage() function to make a JSON string out of the
message object at the last possible moment. We’ll do that by calling JSON.stringify()
inside the call to the data channel’s send() method:

demos/dc-chat-json/js/main.js
function sendOrQueueMessage(peer, message, push = true) {

const chat_channel = peer.chatChannel;
if (!chat_channel || chat_channel.readyState !== 'open') {

queueMessage(message, push);
return;

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

}
try {

chat_channel.send(JSON.stringify(message));➤

} catch(e) {
console.error('Error sending message:', e);
queueMessage(message, push);

}
}

Messages that wind up in the queue will remain as JavaScript objects. That’s
the benefit of stringifying objects within the send() method, even if it makes
the method call look a bit crowded: an object is only JSON when it’s sent. At
the same time, you can glance at a call like chat_channel.send(JSON.stringify(message))
and know that there’s JSON involved. Best of all, JSON.stringify() relieves you of
the error-prone business of constructing a JSON string yourself by hand.

With handleMessageForm() now handling messages and objects, and sendOrQueueMes-
sage() properly sending messages as JSON, we need to update how messages
are appended to the chat log. Two changes are all we need: referencing mes-
sage.text from the new message object that we’re passing in and preserving a
reference to the Unix timestamp in a data-timestamp attribute.

demos/dc-chat-json/js/main.js
function appendMessage(sender, log_element, message) {

const log = document.querySelector(log_element);
const li = document.createElement('li');
li.className = sender;
li.innerText = message.text;➤

li.dataset.timestamp = message.timestamp;➤

log.appendChild(li);
if (log.scrollTo) {

log.scrollTo({
top: log.scrollHeight,
behavior: 'smooth',

});
} else {

log.scrollTop = log.scrollHeight;
}

}

If you’ve not used data- attributes before,2 they are a super useful feature for
storing out-of-band data in HTML. The HTMLElement.dataset property that you
referenced as li.dataset.timestamp makes it pretty straightforward to read and
write data- attributes using JavaScript too.3

2. https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/data-*
3. https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/data-*
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Acknowledging Received Messages
Let’s set up the logic to send a response that acknowledges each message a
peer receives. This will take two steps: first, the receiving peer must parse
the JSON message and check the resulting object for an id attribute. Only
responses will have id attributes—messages have only text and timestamp
attributes. When a message comes in, we create a response object whose id
will take the timestamp value of the incoming message. The response object will
also include its own timestamp, which captures the moment the message
was received. Let’s also reference a handleResponse() function that we’ll build
next for—you guessed it!—handling incoming responses:

demos/dc-chat-json/js/main.js
function addChatChannel(peer) {

peer.chatChannel =
peer.connection.createDataChannel('text chat',
{ negotiated: true, id: 100 });

peer.chatChannel.onmessage = function(event) {
const message = JSON.parse(event.data);➤

if (!message.id) {➤

// Prepare a response and append an incoming message➤

const response = {➤

id: message.timestamp,➤

timestamp: Date.now(),➤

};➤

sendOrQueueMessage(peer, response);➤

appendMessage('peer', '#chat-log', message);➤

} else {➤

// Handle an incoming response➤

handleResponse(message);➤

}➤

};

peer.chatChannel.onclose = function() {
console.log('Chat channel closed.');

};

peer.chatChannel.onopen = function() {
console.log('Chat channel opened.');
while ($self.messageQueue.length > 0 &&

peer.chatChannel.readyState === 'open') {
console.log('Attempting to send a message from the queue...');
// get the message at the front of the queue:
let message = $self.messageQueue.shift();
sendOrQueueMessage(peer, message, false);

}
};

}

• Click HERE to purchase this book now. discuss

Structuring Chat Messages in JSON • 5

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Should the call or data channel fail in the time it takes to respond, the
sendOrQueueMessage() function steps in and queues the response. Responses will
of course be sent from the queue like any other message, as soon as the data
channel opens again. Pretty snazzy, right?

Now you can turn your attention to building out the handleResponse() function.
What it will do is use document.querySelector(), backed by CSS attribute selectors,4

to hunt down in the DOM the exact list item for the appended message that
the remote peer is acknowledging. That message will take a received class. If
more than a second elapses between the message being composed and the
acknowledgment, the list item also takes a delayed class:

demos/dc-chat-json/js/main.js
function handleResponse(response) {

const sent_item = document
.querySelector(`#chat-log *[data-timestamp="${response.id}"]`);

const classes = ['received'];
if (response.timestamp - response.id > 1000) {

classes.push('delayed');
}
sent_item.classList.add(...classes);

}

If you’ve been quietly irritated by my use of the old-school className property
across all the earlier code, I hope you can now breathe easier with the call to
the modern classList API.5 Note also the use of the fancy spread syntax,6

...classes, to ease passing in the array’s values as a series of comma-separated
arguments like .add() expects. The delayed class is only pushed onto the classes
array if there is more than 1000 milliseconds difference between the time-
stamps for when a message was composed and when it was acknowledged.

Let’s reference and style both the received and delayed classes in CSS:

demos/dc-chat-json/css/screen.css
#chat-log .self {

background: #009;
color: #EEE;
opacity: 0.3;➤

float: right;
}
#chat-log .self.received {➤

opacity: 1;➤

}➤

#chat-log .self.received.delayed {➤

4. https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
5. https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
6. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

transition: opacity 0.4s;➤

}➤

A user’s sent messages might now appear faded out when appended to the
chat log, thanks to a semi-transparent opacity value. The received class restores
full opacity (opacity: 1.0). For the delayed class, however, let’s add a nice little
touch to the interface: delayed messages will appear to fade up from semi-
transparency to full opacity over a little less than half a second, thanks to
the CSS transition property.7 Messages with less than a one-second delay will
appear appended at full opacity. That prevents users from being annoyed
by messages always fading up during a low-latency call—which would make
the message interface feel like molasses. Here you can see acknowledged and
queued messages sent after leaving the call:

Excellent. You’re now sending and receiving JSON over data channels. You’ve
also implemented a simple method for acknowledging messages as a peer
receives them. And thanks to some carefully crafted DOM attributes and CSS,
you’ve seen once more how tight the connection is between WebRTC and
interface design.

Let’s apply that same tightly connected approach to a fundamental feature
of WebRTC applications: giving users the ability to toggle their cameras and
microphones on and off.

7. https://developer.mozilla.org/en-US/docs/Web/CSS/transition

• Click HERE to purchase this book now. discuss

Structuring Chat Messages in JSON • 7

https://developer.mozilla.org/en-US/docs/Web/CSS/transition
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

